G-Algebras and Modular Representation Theory

JACQUES THÉVENAZ

Institut de Mathématiques
Université de Lausanne, Switzerland

CLARENDON PRESS • OXFORD
1995
# Contents

Introduction xiii  

Chapter 1. Algebras over a complete local ring 1  
§1. Preliminaries 2  
§2. Assumptions and basic properties of algebras 12  
§3. Lifting idempotents 17  
§4. Idempotents and points 21  
§5. Projective modules 30  
§6. Symmetric algebras 40  
§7. Simple algebras and subalgebras 49  
§8. Exomorphisms and embeddings 57  
§9. Morita equivalence 65  

Chapter 2. \(G\)-algebras and pointed groups 75  
§10. Examples of \(G\)-algebras and interior \(G\)-algebras 76  
§11. Subalgebras of fixed elements and the Brauer homomorphism 88  
§12. Exomorphisms and embeddings of \(G\)-algebras 94  
§13. Pointed groups and multiplicity modules 101  
§14. Relative projectivity and local points 110  
§15. Points and multiplicity modules via embeddings 116  

Chapter 3. Induction and defect theory 123  
§16. Induction of interior \(G\)-algebras 124  
§17. Induction and relative projectivity 132  
§18. Defect theory 146  
§19. The Puig correspondence 155  
§20. The Green correspondence 160  

Chapter 4. Further results on \(G\)-algebras 169  
§21. Basic results for \(p\)-groups 170  
§22. Lifting idempotents with a regular group action 176  
§23. Primitivity theorems for \(p\)-groups 179  
§24. Invariant idempotent decompositions for \(p\)-groups 184  
§25. Covering exomorphisms 189
Chapter 5. Modules and diagrams

§26. The parametrization of indecomposable modules 204
§27. p-permutation modules 216
§28. Endo-permutation modules 228
§29. The Dade group of a p-group 239
§30. Sources of simple modules for p-soluble groups 245
§31. Diagrams 253
§32. Auslander–Reiten duality over a field 261
§33. Auslander–Reiten duality over a discrete valuation ring 271
§34. Almost split sequences 280
§35. Restriction and induction of almost split sequences 291
§36. Defect groups of almost split sequences 300

Chapter 6. Group algebras and blocks

§37. Pointed groups on group algebras 318
§38. The source algebras of a block 330
§39. Blocks with a central defect group 340
§40. Brauer pairs 346
§41. Self-centralizing local pointed groups 362
§42. Character theory 367
§43. Generalized decomposition numbers 378
§44. The module structure of source algebras 391
§45. Blocks with a normal defect group 400
§46. Bilinear forms and number of blocks 411

Chapter 7. Local categories and nilpotent blocks

§47. Local categories 426
§48. Alperin’s fusion theorem 438
§49. Control of fusion and nilpotent blocks 450
§50. The structure of a source algebra of a nilpotent block 461
§51. Lifting theorem for nilpotent blocks 475
§52. The ordinary characters of a nilpotent block 490

Chapter 8. Green functors and maximal ideals

§53. Mackey functors and Green functors 500
§54. The Brauer homomorphism for Mackey functors 507
§55. Maximal ideals and pointed groups 514
§56. Defect theory for maximal ideals 522
§57. Functorial ideals and defect theory 532
§58. The Puig and Green correspondences for maximal ideals 540

Bibliography 549
Notation index 559
Subject index 562