Research Design
and Statistical Analysis

Jerome L. Myers
Arnold D. Well
University of Massachusetts
Contents in Detail

Preface xvi

CHAPTER 1 PRELIMINARY CONSIDERATIONS 1
1.1 Introduction 1
1.2 Manipulated and Observed Independent Variables 1
1.3 Error Variability 3
1.4 Using More Than One Independent Variable in a Design 4
1.5 Within-Subjects and Between-Subjects Factors 5
1.6 Categorical and Continuous Independent Variables 5
1.7 Analysis of Variance and Regression Analysis 6
1.8 Concluding Remarks 8
Exercises 8

CHAPTER 2 SAMPLES AND POPULATIONS 9
2.1 Introduction 9
2.2 Sample Distributions: Displaying the Data 11
 2.2.1 Stem-and-Leaf Plots 11
 2.2.2 Box Plots 15
 2.2.3 Normal Probability Plots 16
2.3 Sample Distributions: Some Basic Statistics 17
2.4 Population Distributions 20
 2.4.1 Discrete Random Variables 21
 2.4.2 Continuous Random Variables 23
 2.4.3 Population Parameters 25
2.5 Linear Combinations 26
 2.5.1 Means of Linear Combinations 27
 2.5.2 Variances of Linear Combinations 28
2.6 Sampling Distributions 31
 2.6.1 What Is a Sampling Distribution? 31
 2.6.2 Some Properties of the Sampling Distribution of the Mean 32
 2.6.3 The Standard Error of the Mean 34
 2.6.4 Differences Between Means 35
2.7 Estimating Population Parameters 36
 2.7.1 Unbiasedness 37
 2.7.2 Consistency 38
 2.7.3 Efficiency 38
 2.7.4 Which Estimator? 38
CHAPTER 3 SOME IMPORTANT DISTRIBUTIONS 49

3.1 Introduction 49
3.2 The Normal Distribution 49
3.3 Inferences Based on the Normal Distribution 50
 3.3.1 Testing a Hypothesis About a Population Mean 51
 3.3.2 One- and Two-Tailed Tests 52
 3.3.3 Type 1 and Type 2 Errors 53
 3.3.4 The Power of a Statistical Test 54
 3.3.5 Confidence Intervals for \(\mu \) 56
3.4 The Central Limit Theorem 59
3.5 The \(t \) Distribution 59
 3.5.1 The \(t \) Statistic 59
 3.5.2 Degrees of Freedom (df) and the \(t \) Distribution 60
3.6 Inferences About Means Using the \(t \) Distribution:
 The One-Sample Case 61
 3.6.1 Testing \(H_0: \mu = \mu_{\text{hyp}} \) 61
 3.6.2 A Confidence Interval for \(\mu \) 62
 3.6.3 The \(t \) Test Using Difference Scores 63
 3.6.4 The Normality Assumption 63
3.7 Inferences About Means Using the \(t \) Distribution:
 The Two-Sample Case 65
 3.7.1 The Standard Error of the Difference Between Two
 Independent Means 65
 3.7.2 Testing Hypotheses About \(\mu_1 - \mu_2 \) 66
 3.7.3 A Confidence Interval for \(\mu_1 - \mu_2 \) 67
 3.7.4 Correlated Scores or Independent Groups? 67
 3.7.5 The Assumption of Normality 69
 3.7.6 The Assumption of Homogeneity of Variance 69
3.8 The Chi Square Distribution 71
 3.8.1 The Chi Square Statistic 71
 3.8.2 Relation of the \(t \) to the \(\chi^2 \) Distribution 73
3.9 The \(F \) Distribution 74
3.10 Concluding Remarks 77
Exercises 78

CHAPTER 4 BETWEEN-SUBJECTS DESIGNS: ONE FACTOR 87

4.1 Introduction 87
4.2 The \(F \) Test of the Null Hypothesis 88
 4.2.1 Some Basic Ideas 88
 4.2.2 The Mean Squares 90
 4.2.3 The \(F \) Test 91
4.3 The Analysis of Variance 92
4.3.1 Partitioning the Total Variability 92
4.3.2 Summarizing the Analysis of Variance 93
4.4.3 Unequal Group Sizes 94
4.4 The Model for the One-Factor Design 97
4.4.1 The Structural Model 97
4.4.2 Expected Mean Squares 98
4.5 Assumptions Underlying the F Test 100
4.5.1 Validity of the Structural Model 100
4.5.2 The Independence Assumption 101
4.5.3 The Normality Assumption 101
4.5.4 The Kruskal-Wallis H Test 102
4.5.5 The Homogeneity of Variance Assumption 105
4.5.6 The Welch (1947) and Brown-Forsythe (1974) Tests 106
4.5.7 Transformations of the Data 109
4.6 Assessing the Importance of Variables 111
4.6.1 Estimating Variance Components 111
4.6.2 Estimating Variance Proportions 112
4.7 Power of the F Test 113
4.7.1 Assessing the Power of the F Test 114
4.7.2 Selecting Sample Size 116
4.8 Concluding Remarks 116
Exercises 117
Appendix 4.1 Computing Formulas for Sums of Squares (SS) Based on Degrees of Freedom (df) 123
Appendix 4.2 Deriving Expected Mean Squares 123

CHAPTER 5 BETWEEN-SUBJECTS DESIGNS: SEVERAL FACTORS 126
5.1 Introduction 126
5.2 Two-Factor Designs: The Analysis of Variance 127
5.2.1 The Data 127
5.2.2 The Analysis 128
5.2.3 More About Interaction 133
5.2.4 Simple Effects 134
5.3 Two-Factor Designs: The General Case 136
5.3.1 Layout of the Design 136
5.3.2 A Structural Model 137
5.4 Three-Factor Designs: The Analysis of Variance 139
5.5 Interaction Effects in the Three-Factor Design 144
5.6 More than Three Independent Variables 147
5.7 Power Calculations in Factorial Designs 147
5.8 Pooling in Factorial Designs 149
5.9 Unequal Cell Frequencies 151
5.9.1 Proportional Population and Sample Sizes 151
5.9.2 Disproportionate Cell Frequencies 153
5.10 Introducing Factors to Reduce Error Variance:
The Treatment × Blocks Design 157
5.11 Concluding Remarks 159
Exercises 159

CHAPTER 6 CONTRASTS AMONG MEANS 169

6.1 Introduction 169
6.2 Contrasts in a One-Factor Design 170
 6.2.1 Examples of Contrasts 170
 6.2.2 The t Statistic for Testing Contrasts 171
 6.2.3 The Sum of Squares Associated with a Contrast 173
6.3 The Proper Unit for the Control of Type 1 Error 177
6.4 Planned Versus Post Hoc Contrasts 178
6.5 Controlling Type 1 Error for Families of Planned Contrasts 180
 6.5.1 The Bonferroni t Procedure 180
 6.5.2 Dunnett’s Test for Comparing Treatment Groups with a Control Group 182
6.6 Controlling Type 1 Error for Post Hoc Contrasts 182
 6.6.1 The General Case 182
 6.6.2 Pairwise Contrasts 184
6.7 Summary of Testing Procedures 186
6.8 Tests When There Is Heterogeneity of Variance 187
6.9 Other Procedures That Might Be Encountered 188
6.10 Contrasts in Multifactor Designs 188
 6.10.1 Further Analyses of Main Effects 189
 6.10.2 Further Analyses of Interaction Effects 190
 6.10.3 Testing Contrasts When There Are More Than Two Factors 194
6.11 Concluding Remarks 195
Exercises 197

CHAPTER 7 TREND ANALYSIS 204

7.1 Introduction 204
7.2 Testing Linear Trend 205
 7.2.1 The Equation for a Straight Line 205
 7.2.2 Variability of the Predicted Means 207
 7.2.3 SS_{\text{lin}} as a Single df Contrast 208
7.3 Testing Nonlinear Trends 209
 7.3.1 A General Test 209
 7.3.2 Orthogonal Polynomials 210
 7.3.3 Strategies in Testing Trend 216
7.4 Multifactor Designs 216
 7.4.1 The Analysis of Main Effects 218
 7.4.2 Analysis of Interaction Effects 218
7.5 Concluding Remarks 225
Appendix 7.1 Calculating SS_{lin} 226
Appendix 7.2 Finding Numerical Values for Orthogonal Polynomial Coefficients 227
Exercises 230

CHAPTER 8 REPEATED-MEASURES DESIGNS 234

8.1 Introduction 234
8.2 The Additive Model for the $S \times A$ Design 237
 8.2.1 The Structural Equation 237
 8.2.2 Expected Mean Squares and Design Efficiency 239
8.3 The Nonadditive Model for the $S \times A$ Design 240
 8.3.1 The Structural Equation 241
 8.3.2 Expected Mean Squares 242
8.4 Testing the Effects of the Independent Variable, A 244
 8.4.1 Sphericity (Homogeneity of Variances of Difference Scores) 244
 8.4.2 Multivariate Analysis of Variance (MANOVA) 247
 8.4.3 The ϵ-Adjusted F Test 247
 8.4.4 Testing Single Degree-of-Freedom Contrasts in Within-Subjects Designs 250
8.5 Estimating Variance Components and ω^2, the Proportion of the Population Variance Accounted For 252
 8.5.1 Estimation Assuming the Additive Model 252
 8.5.2 Estimation Assuming the Nonadditive Model 254
 8.5.3 An Example of the Use of ω^2: Reliability and the Analysis of Variance 255
8.6 Missing Data 256
8.7 Dealing with Nonadditivity 259
8.8 Multifactor Repeated-Measures Designs 259
 8.8.1 The $S \times A \times B$ Design, A and B Fixed 260
 8.8.2 The $S \times A \times B$ Design, A Fixed and B Random 262
 8.8.3 Consequences of Additivity for F Tests 264
 8.8.4 Quasi-F Ratios 264
 8.8.5 Testing Contrasts in the $S \times A \times B$ Design 267
8.9 Fixed or Random Effects? 270
8.10 Nonparametric Procedures for Repeated-Measures Designs 271
 8.10.1 Testing the Equality of the a Treatment Means 271
 8.10.2 The Wilcoxon Signed-Rank (WSR) Test 275
 8.10.3 Cochran's Q Test 277
8.11 Concluding Remarks 280
Exercises 281

CHAPTER 9 MIXED DESIGNS: COMBINING BETWEEN-SUBJECT AND WITHIN-SUBJECTS FACTORS 290

9.1 Introduction 290
9.2 One Between-Subjects and One Within-Subjects Variable 291
 9.2.1 Analyzing the Data 292
CONTENTS IN DETAIL

9.2.2 A Structural Model 295
9.3 Rules for Generating Expected Mean Squares 297
9.4 Comparisons Among Means in Mixed Designs 298
 9.4.1 Comparisons Among the Levels of the Between-Subjects Variable, A 300
 9.4.2 Comparisons Among the Levels of the Within-Subjects Variable, B 301
9.5 Testing Simple Effects 304
9.6 Designs in Which the Within-Subjects Factor Is Pretest-Posttest 305
9.7 Additional Mixed Designs 307
 9.7.1 Two Between-Subjects and One Within-Subjects Factor 307
 9.7.2 One Between-Subjects and Two Within-Subjects Factors 311
9.8 Concluding Remarks 317
Exercises 317

CHAPTER 10 HIERARCHICAL DESIGNS 321

10.1 Introduction 321
10.2 Groups Within Treatments 322
 10.2.1 Partitioning Variance 322
 10.2.2 The Analysis of Variance Model 324
 10.2.3 Pooling Group and Individual Variability 326
10.3 Groups Versus Individuals 327
10.4 Extensions of the Groups-Within-Treatments Design 330
 10.4.1 A Within-Group Variable 330
 10.4.2 Repeated Measurements in Groups-Within-Treatments Designs 333
10.5 Nesting Within-Subjects Variables 334
 10.5.1 The Design 334
 10.5.2 Partitioning the Total Variability 335
 10.5.3 The Analysis of Variance 337
10.6 Concluding Remarks 339
Exercises 340

CHAPTER 11 LATIN SQUARES AND RELATED DESIGNS 344

11.1 Introduction 344
11.2 Selecting a Latin Square 346
11.3 The Single Latin Square 348
 11.3.1 Calculations 348
 11.3.2 The Additive Model 350
 11.3.3 Relative Efficiency 351
 11.3.4 Missing Scores 352
 11.3.5 Nonadditivity 352
 11.3.6 Investigating Main and Interaction Effects of Several Treatments 356
11.4 Using Several Squares 357
 11.4.1 The Basic Design and Analysis 357
 11.4.2 Including Between-Subjects Variables 360
11.5 Replicating a Single Latin Square 364
 11.5.1 Analysis When C Has Fixed Effects 364
 11.5.2 Analysis When C Has Random Effects 366
11.5.3 Using the Computer to Analyze the Data 367
11.5.4 Including Between-Subjects Variables 368
11.6 Several Squares or Replicated Squares? 371
11.7 Greco-Latin Squares 371
11.8 Applications to Between-Subjects Designs 372
11.9 Concluding Remarks 372

Appendix: The Relation Between Error Terms for the Repeated-Measures and Latin-Square Designs 375

Exercises 375

CHAPTER 12 BIVARIATE CORRELATION AND REGRESSION 378

12.1 Introduction 378
12.2 Linear Functions and Scatter Diagrams 381
12.3 The Correlation Coefficient as an Index of the Extent to Which There Is a Linear Relation 382
12.4 Linear Prediction and the Least Squares Criterion 386
12.4.1 The Optimal Linear Regression Equation 386
12.4.2 Predicting X From Y 388
12.4.3 Regression to the Mean 390
12.4.4 Partitioning the Variability in Bivariate Regression 391
12.4.5 The Coefficient of Determination, r^2 394
12.4.6 A Second Example 395

12.5 Inference in Linear Regression 398
12.5.1 A Model for Linear Regression 398
12.5.2 Inference About β_1 and β_0 400
12.5.3 Inference About the Population Regression Line 402
12.5.4 Obtaining a Confidence Interval for Y_{new}, a New Value of Y at X_1 403

12.6 The One-Factor Design with Two Groups: A Special Case of Regression Analysis 404

12.7 Regression Analysis When X Is a Random Variable 405

12.8 Regression When X Is Subject to Random Error 406

12.9 Checking for Violations of Assumptions Using Residuals 406
12.9.1 Introduction 406
12.9.2 Linearity and Homogeneity of Variance 408
12.9.3 Normality 410
12.9.4 Independence 410

12.10 An F Test for the Lack of Fit of the Linear Model 411

12.11 Locating Outliers and Influential Data Points 412
12.11.1 Influential Points 414
12.11.2 Outliers 414
12.11.3 An Example with an Outlier 416

12.12 Testing Independent Slopes for Equality 419

12.13 Confidence Intervals and Hypothesis Tests in Repeated-Measures Designs 422

12.14 Concluding Remarks 424
Appendix 12.1: Proof That $z_Y = \pm z_X$ When $Y = b_0 + b_1 X$ 425
Appendix 12.2: Unbiased Estimators and Standard Errors 425
Appendix 12.3: Proof that $\hat{SE}(e_i) = \hat{\sigma}_e \sqrt{1 - h_{ii}}$ 429
Exercises 430

CHAPTER 13 ANALYSIS OF COVARIANCE 435

13.1 Introduction 435
13.2 An Example of ANCOVA 436
13.3 Hypothesis Tests in ANOVA and ANCOVA as Comparisons Between Models 440
13.4 Finding and Comparing Adjusted Means in ANCOVA 444
 13.4.1 Adjusting Group Means in Y for Differences in X 444
 13.4.2 Testing Contrasts by Using Adjusted Means 445
13.5 Testing Homogeneity of Slopes 447
13.6 Assumptions and Interpretation in ANCOVA 449
 13.6.1 Introduction 449
 13.6.2 Normality and Homogeneity of Variance 449
 13.6.3 Linearity 449
 13.6.4 Assumption of Homogeneity of Regression Slopes 450
 13.6.5 Groups Formed by Random Assignment Versus Nonequivalent Groups 450
 13.6.6 Assumption of Independence of Treatment and Covariate 451
 13.6.7 Assumption That the Covariate Is Fixed and Measured Without Error 453
13.7 ANCOVA Versus the Use of Gain Scores in Pretest-Posttest Designs 454
13.8 ANCOVA Versus Treatment by Blocks 454
13.9 Using Software Packages to Perform ANCOVA 456
13.10 ANCOVA in Higher-Order Designs 457
13.11 Some Extensions of ANCOVA 459
 13.11.1 More Than One Covariate 459
 13.11.2 Polynomial ANCOVA 460
13.12 Concluding Remarks 460
Appendix 13.1: Definition of Design Imprecision 460
Appendix 13.2: Comment on Figure 13.4 461
Exercises 461

CHAPTER 14 MORE ABOUT CORRELATION 465

14.1 Issues in the Interpretation of the Correlation Coefficient 465
 14.1.1 Correlation Does Not Imply Causation 465
 14.1.2 The Size of r Is Not Changed by Linear Transformations of X and Y 466
 14.1.3 The Relation Between r and b_1, $\hat{\sigma}_X$, $\hat{\sigma}_Y$, and $\hat{\sigma}_e$ 466
 14.1.4 The Sample-Specific Nature of r 470
14.2 Other Factors That Affect the Size of the Correlation Coefficient 472
 14.2.1 Measurement Error 472
 14.2.2 The Shapes of the X and Y Distributions 473
 14.2.3 Combining Data Across Groups 474
14.3 Inference About Correlation 475
 14.3.1 A Model for Correlation 475
 14.3.2 Testing Hypotheses and Finding Confidence Intervals About \(\rho \) 477
 14.3.3 Testing Whether Independent Correlations Are Significantly Different 480
 14.3.4 Testing Hypotheses About Correlation Matrices 480
14.4 Partial Correlations 482
 14.4.1 The Partial Correlation Coefficient 482
 14.4.2 Partialing Out More Than One Variable 485
 14.4.3 Significance Tests for Partial Correlation Coefficients 486
 14.4.4 The Semipartial (or Part) Correlation Coefficient 486
 14.4.5 Constraints in Sets of Correlation Coefficients 486
14.5 The Extreme-Groups Design 487
14.6 Other Measures of Correlation 488
 14.6.1 The Spearman Correlation Coefficient for Ranked Data (\(r_s \)) 488
 14.6.2 The Kendall Tau Coefficient (\(\tau \)) 490
 14.6.3 The Point-Biserial and Phi Correlation Coefficients 491
 14.6.4 The Biserial and Tetachronic Correlation Coefficients 491
14.7 Concluding Remarks 492
Exercises 493

CHAPTER 15 MULTIPLE REGRESSION 498

15.1 Introduction 498
15.2 A Regression Example with Two Predictor Variables 499
15.3 The Nature of the Regression Coefficients 502
15.4 The Multiple Correlation Coefficient and the Partitioning of Variability in Multiple Regression 503
 15.4.1 The Multiple Correlation Coefficient 503
 15.4.2 Partitioning \(SS_Y \) into \(SS_{\text{reg}} \) and \(SS_{\text{error}} \) 504
 15.4.3 Partitioning \(SS_{\text{reg}} \) 505
 15.4.4 Cross-Validation and the Adjusted (or Shrunken) Multiple Correlation Coefficient 508
15.5 Inference in Multiple Regression 510
 15.5.1 Models and Assumptions 510
 15.5.2 Testing the Hypothesis \(\beta_1 = \beta_2 \cdots = \beta_p = 0 \) 511
 15.5.3 Testing the Hypothesis \(\beta_i = 0 \) 511
 15.5.4 Partial F Tests: Procedures for Testing a Subset of the \(\beta_i \) 512
 15.5.5 Inferences About the Prediction of \(Y \) 514
15.6 Selecting the Best Regression Equation for Prediction 516
 15.6.1 Forward Selection 516
 15.6.2 Backward Elimination 517
 15.6.3 Stepwise Regression 518
15.7 Explanation Versus Prediction in Regression 519
 15.7.1 Specification Errors 519
 15.7.2 Multicollinearity 521
 15.7.3 Interpretation of the Regression Coefficients as the Direct Effects of the \(X_j \) 522
CONTENTS IN DETAIL

15.7.4 Standardized Versus Unstandardized Regression Coefficients 522
15.8 Multiple Regression and Trend Analysis 523
15.9 Multiple Regression in Repeated-Measures Designs 526
15.10 Developing Multiple Regression Using Matrix Notation 528
 15.10.1 Using Matrices to Represent Linear Equations in Regression 528
 15.10.2 Inference in Multiple Regression Expressed in Terms of Matrix Notation 532
15.11 Outliers and Influential Points in Multiple Regression 534
15.12 Concluding Remarks 536
Appendix: Proof That Var(\hat{\beta}) = \sigma^2_\epsilon (X'X)^{-1} 537
Exercises 538

CHAPTER 16 REGRESSION WITH CATEGORICAL VARIABLES 545

16.1 Introduction 545
16.2 One-Factor Designs 546
 16.2.1 Coding Categorical Variables 546
 16.2.2 Effect Coding 547
 16.2.3 Testing Hypotheses About a Set of Contrasts 550
16.3 Regression Analysis and Factorial Designs 552
 16.3.1 Orthogonal Designs 553
 16.3.2 Nonorthogonal Designs 555
16.4 Using Categorical and Continuous Variables in the Same Analysis 563
 16.4.1 Testing Homogeneity of Regression Slopes by Using Multiple Regression 563
 16.4.2 ANCOVA as a Special Case of Multiple Regression 567
16.5 Coding Designs with Within-Subjects Factors 569
16.6 Concluding Remarks 572
Appendix: Some Other Forms of Coding 573
Exercises 576

APPENDIXES

Appendix A Notation and Summation Operations 581
Appendix B Expected Values and Their Applications 590
Appendix C Matrix Algebra 594
 Exercises 603
Appendix D Statistical Tables 605
Appendix E Control Information for Computer Programs for Statistical Analysis 640

Answers to Selected Exercises 652
References 693
Index