CONTENTS

List of symbols xv

1 Aspects of parallel computing

1.1 Parallel architectures 2
1.2 Specific computers 5
1.3 Techniques of parallelization 9
1.4 Communication and computation 12
1.5 Parallel languages 15
1.6 Parallel scientific libraries 18
1.7 Heterogeneous and distributed computing 20
1.8 Parallel software tools 22
1.9 Performance measures 24

2 An introduction to sequential ODE methods 28

2.1 The initial value problem 29
2.2 Stiffness 32
2.3 The occurrence of stiffness 35
2.4 Two elementary numerical methods 38
2.5 A general framework for IVP methods 41
2.6 Linear multistep methods 41
2.7 Runge-Kutta methods 45
2.8 Multivalue methods 50
2.9 Other approaches 55
2.10 Additional features of IVPs 59

3 Order and stability – a general framework 62

3.1 Zero stability, linear stability and convergence 63
3.2 Order 67
3.3 Linear stability 80
3.4 Explicit methods 88
3.5 Implicit methods 93
3.6 Nonlinear stability 103
3.7 Stiff order and differential-algebraic equations 106
3.8 Variable-stepsize implementations 111

4 Parallel linear algebra 115
4.1 Approaches to parallel programming 116
4.2 Cyclic reduction 117
4.3 Partitioning 120
4.4 Direct methods 121
4.5 Stationary iterative techniques 127
4.6 Multigrid techniques 132
4.7 Deflation techniques for systems of equations 136
4.8 Krylov subspace techniques 145
4.9 Aspects of parallelization 155

5 Direct methods for ODES 165
5.1 Introduction 166
5.2 Direct methods 170
5.3 Multiply implicit methods 175
5.4 Prediction-correction: a background 184
5.5 A general framework 187
5.6 Parallel one-block methods 194
5.7 Limits on parallelism 198
5.8 An error analysis 201
5.9 High order predictors 210
5.10 Diagonally implicit iteration 219
5.11 Prediction-correction based on general splittings 225

6 Diverse approaches to parallelism 231
6.1 Linear IVPs 232
6.2 Linear BVPs 233
6.3 The Krylov subspace techniques 238
CONTENTS

6.4 Extrapolation 242
6.5 Using parallelism for robustness 245
6.6 Other techniques 246
6.7 Parallelism across the steps 252
6.8 Delay differential equations 264
6.9 Applications to other differential systems 268

7 Waveform relaxation techniques 276
7.1 The Picard method 278
7.2 Jacobi and Gauss-Seidel WR algorithms 281
7.3 Multisplitting WR algorithms 284
7.4 The convergence of linear WR algorithms 286
7.5 Some convergence results 292
7.6 Linear acceleration of waveform iteration 296
7.7 The convergence of overlapping splittings 299
7.8 Multigrid waveform techniques 302
7.9 Nonlinear convergence 311
7.10 Waveform Newton iteration 317
7.11 Asynchronous techniques 320
7.12 Other applications 321
7.13 Preconditioning 327

8 Discrete waveform methods 336
8.1 An example 337
8.2 Linear multistep WR methods 341
8.3 Runge-Kutta WR methods 346
8.4 Discretized multisplittings 352
8.5 Mesh refinement and the nonlinear problem 353
8.6 Multistage methods in waveform relaxation 361
8.7 Contractivity of waveform RK methods 366

9 Implementation of waveform algorithms 373
9.1 Coupling and reordering 374
9.2 Adaptive waveform algorithms 380
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3 VODE, VODEPK, DASPK – ODE solvers</td>
<td>385</td>
</tr>
<tr>
<td>9.4 A case study</td>
<td>389</td>
</tr>
<tr>
<td>9.5 Numerical results</td>
<td>396</td>
</tr>
<tr>
<td>9.6 Conclusions</td>
<td>400</td>
</tr>
<tr>
<td>References</td>
<td>404</td>
</tr>
<tr>
<td>Index</td>
<td>440</td>
</tr>
</tbody>
</table>