The Queen of Mathematics

A Historically Motivated Guide to Number Theory

Jay R. Goldman
School of Mathematics
University of Minnesota
Minneapolis, Minnesota

A K Peters
Wellesley, Massachusetts
Contents

PART 1: FROM FERMAT TO LEGENDRE

Chapter 1. The Founding Fathers
1. The Beginnings ... 1
2. Fermat’s Mathematical Background 5
3. Pythagorean Triples .. 8
Appendix: Properties of the Integers 11

Chapter 2. Fermat
1. Fermat (1601-1665) ... 12
2. Infinite Descent .. 13
3. Fermat’s Last Theorem .. 14
4. Pell’s Equation ... 17
5. $y^3 = x^2 + k$.. 19
6. Sums of Squares .. 19
7. Perfect Numbers and Fermat’s Little Theorem 21
8. Fermat’s Error .. 23

Chapter 3. Euler
1. Euler .. 24
2. Partitions of a Number ... 27
3. The Beginning of Analytic Number Theory; Prime Numbers, Zeta Functions, Bernoulli Numbers 30
4. Arithmetic Functions .. 38
5. The Beginning of Algebraic Number Theory 39

xvii
Chapter 4. From Euler to Lagrange; The Theory of Continued Fractions

1. Introduction ... 43
2. The Basic Notions: Finite and Infinite Continued Fractions. 44
 The Continued Fraction Algorithm 48
3. The Early History .. 50
4. The Algebra of Finite Continued Fractions 51
5. The Arithmetic of Finite Continued Fractions 55
6. Infinite Continued Fractions 58
7. Diophantine Approximation and Geometry 61
8. Quadratic Irrationalities ... 66
9. Pell’s Equation .. 71
10. Generalizations .. 73

Chapter 5. Lagrange

1. Lagrange and His Work ... 76
2. Quadratic Forms .. 78

Chapter 6. Legendre

1. Legendre ... 81
2. Rational Points on Conics .. 82
3. Distribution of Prime Numbers ... 82
4. Quadratic Residues and Quadratic Reciprocity 83

PART 2: GAUSS AND THE DISQUISITIONES ARITHMETICA

Chapter 7. Gauss

1. Gauss and His Work .. 86
2. An Overview of the Disquisitiones Arithmeticae 94

Chapter 8. Theory of Congruence 1

1. Section I of the Disquisitiones 95
2. Residue Classes ... 99
3. Congruences and Algebraic Structures 101
4. Applications ... 103
5. Linear Congruences ... 107
Chapter 9. Theory of Congruences 2
1. Introduction .. 109
2. Reduced Residue Classes 109
3. The Structure of $\mathbb{Z}/n\mathbb{Z}$ 111
4. Polynomial Congruences 114
5. Polynomial Congruences and Polynomial Functions 119
6. Congruences in Several Variables; Chevalley's Theorem ... 121
7. Solutions of Congruences and Solutions of Equations; The Hasse Principle 123

Chapter 10. Primitive Roots and Power Residues
1. Primitive Roots ... 125
2. Indices .. 127
3. k^{th} Power Residues 129

Chapter 11. Congruences of the Second Degree
1. Introduction ... 132
2. Elementary Properties of Quadratic Residues 133
3. Gauss's Lemma ... 135
4. Computing $\left(\frac{a}{p} \right)$ 136
5. Quadratic Reciprocity 1 141
6. Quadratic Reciprocity 2 145
7. Some History and Other Proofs 151

Chapter 12. Binary Quadratic Forms 1: Arithmetic Theory
1. Introduction ... 155
2. Equivalence of Forms 156
3. Matrix Notation and the Discriminant 157
4. Reduced Forms and the Number of Classes 159
5. Representation and Equivalence 162
6. Representations and Quadratic Residues 163
7. Proper Equivalence 166
8. Definite and Indefinite Forms 167
9. Positive Definite Forms 169
10. Primitive Forms and the Class Number 171
Chapter 13. Binary Quadratic Forms 2: Geometric Theory
1. Introduction ... 174
2. The Roots of a Form .. 175
3. Positive Definite Forms and the Upper Half Plane 178
4. Linear Fractional Transformations 181
5. The Fundamental Domain 182
6. Forms and the Upper Half Plane Revisited 190
7. Automorphs and the Number of Representations 191
8. Indefinite Forms, $D > 0$ 195
 Reduction ... 195
 Automorphs and Representations 196
 Geometric Methods ... 196
9. Composition of Forms 198
10. Genus ... 201
11. Sections V and VI of the Disquisitiones 202

Chapter 14. Cyclotomy
1. Introduction to Section VII of the Disquisitiones 203
2. Constructibility and the Theory of Equations 206
3. The 5-gon and Gaussian Periods 209
4. Back to Quadratic Reciprocity 212
5. Numbers of Solutions of Congruences;
 Equations over Finite Fields 220
6. Final Remarks on the Disquisitiones 221

PART 3: ALGEBRAIC NUMBER THEORY

Chapter 15. Algebraic Number Theory 1: The Gaussian
 Integers and Biquadratic Reciprocity
1. Gauss and Biquadratic Reciprocity 223
2. The Gaussian Integers 227
 Back to the Two Square Problem 230
3. Congruence and the Law of Biquadratic Reciprocity 232
4. The Zeta Function and L Function of $\mathbb{Z}[i]$ 236
Chapter 16. Algebraic Number Theory 2: Algebraic Numbers and Quadratic Fields
1. The Development of Algebraic Number Theory 241
2. Algebraic Integers .. 250
3. Quadratic Fields ... 252
4. Quadratic Integers ... 254
5. Geometric Representation; Divisibility and Units 257
6. Factorization in Quadratic Fields 260
7. Euclidean Domains and Unique Factorization 261
8. Non-Unique Factorization and Ideals 264

Chapter 17. Algebraic Number Theory 3: Ideals in Quadratic Fields
1. Arithmetic of Ideals in I_d 267
2. Lattices and Ideals ... 270
Appendix: Lattices ... 274
3. More Arithmetic of Ideals 275
4. Unique Factorization of Ideals 278
5. Applications of Unique Factorization 281
 Divisibility and Diophantine Equations 281
 Unique Factorization Domains 282
6. The Factorization of Rational Primes 282
7. Class Structure and the Class Number 284
8. Finiteness of the Class Number; Norm of an Ideal 289
9. Bases and Discriminants 292
10. The Correspondence between Forms and Fields 294
11. Applications of the Correspondence 299
 Class Numbers ... 299
 Units and Automorphs of Forms 300
 The Class Group, Composition of Forms, and the Representation of Numbers by Forms 301
12. Factorization of Rational Primes Revisited 301
13. General Reciprocity Laws 307
Appendix: Dirichlet and 19th-Century Number Theory 309
PART 4: ARITHMETIC ON CURVES

Chapter 18. Arithmetic on Curves 1: Rational Points and Plane Algebraic Curves

1. Introduction ... 311
2. Lines .. 313
3. Conics ... 314
4. Cubics and the Geometric Form of Mordell's Theorem 319
5. The Need for Projective Geometry 322
6. The Real Projective Plane; Homogeneous Coordinates 326
 The Real Projective Plane and its Models 326
 Homogeneous Coordinates ... 330
7. Algebraic Curves in the Projective Plane 331
8. Geometry Over a Field; Higher Dimensions and Duality 337
 General Fields .. 337
 Higher Dimensions .. 339
 Duality ... 339

Chapter 19. Arithmetic on Curves 2: Rational Points and Elliptic Curves

1. Introduction .. 343
2. Intersection of Curves; Bezout's Theorem 343
3. The Group Law and the Algebraic Form of Mordell's Theorem 348
4. Birational Equivalence; Weierstrass Normal Form 350
5. Singular Points and the Genus 355
6. Elliptic Curves and the Group Law 360
7. Elliptic Functions and Elliptic Curves 368
8. Complex Points of Finite Order 372
9. The Early History ... 373

Chapter 20. Arithmetic on Curves 3: The Twentieth Century

1. From Poincaré to Weil ... 383
2. Points of Finite Order; The Lutz–Nagell Theorem 388
3. The Easy Part of the Theorem 390
4. The Hard Part of the Theorem 391
5. Mordell's Theorem; An Outline of the Proof 399
6. Some Preliminary Results ... 402
7. The Height Function .. 404
8. The Weak Mordell–Weil Theorem 409
9. Equations over Finite Fields; the Zeta and
 L Functions of a Curve ... 413
10. Complex Multiplication .. 416

PART 5: MISCELLANEOUS TOPICS

Chapter 21. Irrational and Transcendental Numbers,
Diophantine Approximation
1. The Early History .. 418
2. From Euler to Dirichlet ... 419
3. Liouville to Hilbert; The Beginning of Transcendental
 Number Theory .. 423
4. Simultaneous Approximation; Kronecker’s Theorem 431
5. Thue: Diophantine Approximation and
 Diophantine Equations ... 432
6. The 20th Century ... 436
7. Other Results and Problems 438
8. The Literature ... 439

Chapter 22. Geometry of Numbers
1. The Motivating Problem; Quadratic Forms 440
2. Minkowski’s Fundamental Theorem 443
3. Minkowski’s Theorem for Lattices 448
 Lattices .. 448
 Change of Basis .. 451
 Minkowski’s Theorem Reformulated 452
4. Back to Quadratic Forms .. 452
5. Sums of Two and Four Squares 454
6. Linear Forms .. 457
7. Sums and Products of Linear Forms; The Octahedron 459
8. Gauge Functions; The Equation of a Convex Body 463
9. Successive Minima ... 468
10. Other Directions .. 469
xxiv Contents

Chapter 23. p-adic Numbers and Valuations
1. History ... 470
2. The p-adic Numbers; An Informal Introduction 471
3. The Formal Development 478
4. Convergence ... 482
5. Congruences and p-adic Numbers 487
6. Hasse’s Principle; The Hasse-Minkowski Theorem 489
7. Valuations and Algebraic Number Theory 493

Bibliography .. 497

Index .. 517