Representation of Lie Groups and Special Functions

Recent Advances

by

N. Ja. Vilenkin†

formerly of
The Correspondence Pedagogical Institute,
Moscow, Russia

and

A.U. Klimyk
Institute for Theoretical Physics,
Ukrainian Academy of Sciences,
Kiev, Ukraine
Table of Contents

Preface ........................................... xiii

Chapter 1:  
\textit{h–Harmonic Polynomials, h–Hankel Transform, and Coxeter Groups}  
1

1.1. Coxeter Groups ................................... 1
  1.1.1. Dihedral groups .................................... 1
  1.1.2. Generating elements and defining relations. .......... 2
  1.1.3. Coxeter groups ................................... 3
  1.1.4. Coxeter matrices. The classification of irreducible Coxeter groups ....... 5
  1.1.5. Invariants of Coxeter groups ......................... 7
  1.1.6. Invariant bilinear forms .......................... 9
  1.1.7. Irreducible representations ......................... 11
  1.1.8. Representations on polynomials .................... 14
  1.1.9. Representations on a group algebra ................. 14
  1.1.10. Polynomials $p_g(t)$ .......................... 16

1.2. The $h$–Laplacian and $h$–Harmonic Polynomials .......... 18
  1.2.1. The $h$–Laplacian .................................. 18
  1.2.2. $h$–Harmonic polynomials ........................ 21
  1.2.3. Differential-difference operators $T_i$ .............. 25
  1.2.4. The operators $T_i^*$ ............................ 27
  1.2.5. Averaging operator ................................ 30
  1.2.6. The minimum principle ............................ 32
  1.2.7. Polynomials related to representations ............ 34
  1.2.8. Examples of $h$–harmonic polynomials ............ 38

1.3. The Poisson Kernel for $h$–Harmonic Functions .......... 44
  1.3.1. $h$–Exact 1–forms .................................. 44
  1.3.2. The intertwining operator ........................ 47
  1.3.3. Kernels $K_r(x, y)$ .............................. 49
  1.3.4. The space $\mathcal{L}^2(\mathbb{R}^n, h^2d\mu)$ ............ 51
  1.3.5. The bilinear form on polynomials ................. 53
  1.3.6. The operator $\exp(-\Delta_h/2)$ .................... 54
  1.3.7. Properties of $K_r(x, y)$ and $K(x, y)$ ............ 57
  1.3.8. The Poisson kernel .............................. 58

1.4. $h$–Hankel Transform .................................. 61
  1.4.1. Definition ....................................... 61
  1.4.2. Restriction of $h$–Hankel transform onto the sphere .... 63
Table of Contents

1.4.3. \( h \)-Bessel functions ................................................. 64
1.4.4. \( h \)-Hankel transform and classical special functions .... 64

Chapter 2:
Symmetric Polynomials and Symmetric Functions 67

2.1. Simplest Symmetric Polynomials and Symmetric Functions 67
2.1.1. Partitions and their orderings ...................................... 67
2.1.2. The ring of symmetric functions.
         Monomial symmetric polynomials and functions ................. 69
2.1.3. Elementary symmetric functions ................................. 72
2.1.4. Complete symmetric functions ................................... 73
2.1.5. Power–sum symmetric functions .................................. 74
2.1.6. Schur functions .................................................... 77

2.2. The Scalar Product on \( \Lambda \) and Skew Schur Functions .... 80
2.2.1. The scalar product on \( \Lambda \) ...................................... 80
2.2.2. Matrices of transitions ........................................... 83
2.2.3. Skew Schur functions ............................................. 86
2.2.4 Summation formulas containing Schur functions ............. 89

2.3. Hall–Littlewood Polynomials and Functions .................... 92
2.3.1. Definition ............................................................ 92
2.3.2. The functions \( q_\lambda \) and \( S_\lambda \) .......................... 95
2.3.3. The scalar product on \( \Lambda(\mathbb{Q}(t)) \) ....................... 96
2.3.4. Skew Hall–Littlewood polynomials ............................... 103

2.4. Jack Symmetric Polynomials and Functions ..................... 105
2.4.1. Definition ........................................................... 105
2.4.2. Symmetric functions \( J_n(x; \alpha) \) .............................. 109
2.4.3. Differential operator \( D(\alpha) \) ................................. 112
2.4.4. Duality relation ................................................... 115
2.4.5. Skew Jack symmetric functions ................................ 117
2.4.6. Expression for \( J_\mu \) in terms of \( J_{\mu-I} \) .............. 119
2.4.7. Expression for \( J_\lambda(1, \ldots , 1; \alpha) \) ................... 121
2.4.8. Expressions for \( c_\lambda(\alpha) \), \( r_\lambda(\alpha) \), and \( j_\lambda(\alpha) \) 123
2.4.9. Expression for \( J_{\lambda/\mu} \) ........................................ 126
2.4.10. Jack polynomials and zonal polynomials ...................... 126

2.5 Generalized Binomial Coefficients and Jack Polynomials .... 127
2.5.1. Generalized binomial coefficients ............................. 127
2.5.2. The main theorem ................................................ 131
2.5.3. Expressions for generalized binomial coefficients .......... 135
2.5.4. Special cases of generalized binomial coefficients ......... 137
2.5.5. Relations for Jack polynomials ................................ 137
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.6. Estimate of Jack polynomials</td>
<td>139</td>
</tr>
<tr>
<td>2.5.7. Jack polynomials of two variables</td>
<td>141</td>
</tr>
<tr>
<td>2.6. Macdonald Symmetric Polynomials and Functions</td>
<td>143</td>
</tr>
<tr>
<td>2.6.1. The space ( \Lambda(F) )</td>
<td>143</td>
</tr>
<tr>
<td>2.6.2. The operator ( D )</td>
<td>145</td>
</tr>
<tr>
<td>2.6.3. Macdonald symmetric functions and polynomials</td>
<td>148</td>
</tr>
<tr>
<td>2.6.4. Duality relation</td>
<td>150</td>
</tr>
<tr>
<td>2.6.5. Skew Macdonald symmetric functions</td>
<td>152</td>
</tr>
<tr>
<td>2.7. Macdonald’s Orthogonal Polynomials Associated with Root Systems</td>
<td>154</td>
</tr>
<tr>
<td>2.7.1. Root systems</td>
<td>154</td>
</tr>
<tr>
<td>2.7.2. Classification of irreducible root systems</td>
<td>157</td>
</tr>
<tr>
<td>2.7.3. Admissible pairs of irreducible root systems</td>
<td>164</td>
</tr>
<tr>
<td>2.7.4. The group algebra ( A )</td>
<td>166</td>
</tr>
<tr>
<td>2.7.5. Scalar products on ( A )</td>
<td>168</td>
</tr>
<tr>
<td>2.7.6. The operator ( E )</td>
<td>172</td>
</tr>
<tr>
<td>2.7.7. Orthogonal polynomials associated with root systems</td>
<td>178</td>
</tr>
<tr>
<td>2.7.8. Special cases of polynomials ( P_\lambda )</td>
<td>179</td>
</tr>
<tr>
<td>Chapter 3: Hypergeometric Functions Related to Jack Polynomials</td>
<td>185</td>
</tr>
<tr>
<td>3.1. Hypergeometric Functions Related to Jack Polynomials</td>
<td>185</td>
</tr>
<tr>
<td>3.1.1. Definition</td>
<td>185</td>
</tr>
<tr>
<td>3.1.2. Differential equations for ( 2F_1^{(d)} )</td>
<td>187</td>
</tr>
<tr>
<td>3.1.3. Integral representation of ( 2F_1^{(d)} )</td>
<td>192</td>
</tr>
<tr>
<td>3.1.4. The integral relation for Jack polynomials</td>
<td>196</td>
</tr>
<tr>
<td>3.1.5. Properties of hypergeometric functions</td>
<td>197</td>
</tr>
<tr>
<td>3.1.6. Symmetric orthogonal polynomials associated to Jack polynomials</td>
<td>200</td>
</tr>
<tr>
<td>3.2. Hypergeometric Functions of Two Variables</td>
<td>206</td>
</tr>
<tr>
<td>3.2.1. Expressions in terms of the functions ( 1F_1 ) and ( 2F_1 )</td>
<td>206</td>
</tr>
<tr>
<td>3.2.2. The Appell function ( F_4 )</td>
<td>209</td>
</tr>
<tr>
<td>3.2.3. Expression for ( 2F_1^{(d)} ) in terms of ( F_4 )</td>
<td>211</td>
</tr>
<tr>
<td>3.2.4. Generalized Laplace transform</td>
<td>213</td>
</tr>
<tr>
<td>3.2.5. Generalized Laguerre polynomials related to Jack polynomials</td>
<td>216</td>
</tr>
<tr>
<td>3.2.6. Hankel transform</td>
<td>221</td>
</tr>
<tr>
<td>3.3. Hypergeometric Functions Associated to Root Systems</td>
<td>222</td>
</tr>
<tr>
<td>3.3.1. Introduction</td>
<td>222</td>
</tr>
</tbody>
</table>
Table of Contents

3.3.2. Zonal spherical functions 224
3.3.3. Hypergeometric functions associated to root systems 227
3.3.4. Symmetric Jacobi polynomials associated to root systems 237
3.3.5. Relations between Jack polynomials and Jacobi polynomials associated to the root system $A_{n-1}$ 239
3.3.6. Jacobi polynomials and hypergeometric functions associated to the root system $BC_n$ 245
3.3.7. Relation between Jacobi polynomials associated to Jack polynomials and Jacobi polynomials associated to the root system $BC_n$ 250

3.4. Basic Hypergeometric Functions Related to Schur Polynomials 252
3.4.1. Definition 252
3.4.2. Expressions for the Vandermonde determinant 254
3.4.3. Determinantal formulas for $r\psi^{(1)}_s$ and $r\varphi^{(1)}_s$ 256
3.4.4. Summation formulas 259
3.4.5. Integral representation 261
3.4.6. Transformation properties of $2\varphi^{(1)}_1$ 263

Chapter 4:
Clebsch–Gordan Coefficients and Racah Coefficients of Finite Dimensional Representations 265

4.1. Finite Dimensional Representations of Semisimple Lie Groups and Algebras 265
4.1.1. Semisimple Lie groups and algebras 265
4.1.2. Finite dimensional representations 269
4.1.3. Finite dimensional representations of semisimple Lie algebras 270
4.1.4. Properties of a Weyl group 273

4.2. Tensor products of finite dimensional representations 276
4.2.1. Expressions for representation multiplicities in terms of weight multiplicities 276
4.2.2. Formulas for decomposition of tensor products 278
4.2.3. Ranges of disposition of highest weights in decompositions of tensor products 280
4.2.4. Upper bound for multiplicities of representations in tensor products 282
4.2.5. The theorem on shifts of highest weights 283
4.2.6. Expressions for $n_i$ 288
4.3. **Clebsch–Gordan Coefficients of Compact Groups** 289
   - **4.3.1. Definition** 289
   - **4.3.2. CGC's and matrix elements of representations** 291
   - **4.3.3. Problems of uniqueness for CGC's** 293
   - **4.3.4. Permutation symmetry of CGC's** 296

4.4. **Clebsch–Gordan Coefficients and Scalar Factors** 299
   - **4.4.1. Subgroup chains and corresponding orthonormal bases** 300
   - **4.4.2. Definition of scalar factors** 301
   - **4.4.3. Orthogonality relations for scalar factors** 305
   - **4.4.4. Permutation symmetries of scalar factors** 306

4.5. **Racah Coefficients** 309
   - **4.5.1. Definition** 309
   - **4.5.2. Special cases of RC's** 312
   - **4.5.3. Permutation symmetries** 313
   - **4.5.4. RC's and characters of representations** 315
   - **4.5.5. The addition theorem and the Biedenharn-Elliott identity** 316

Chapter 5:
**Clebsch–Gordan Coefficients of the group $U(n)$ and Related Generalizations of Hypergeometric Functions** 317

5.1. **Clebsch–Gordan Coefficients of the Group $U(n)$ and the Denominator Function** 317
   - **5.1.1. CGC's of the tensor product $T_m \otimes T_{(p,0)}$** 317
   - **5.1.2. CGC's with multiplicities** 319
   - **5.1.3. CGC's with multiplicities and scalar factors** 323
   - **5.1.4. The denominator function** 326
   - **5.1.5. Another definition of the denominator function** 328
   - **5.1.6. The path sum formula** 330

5.2. **The algebra of Boson Operators and Clebsch–Gordan Coefficients of the Group $U(n)$** 333
   - **5.2.1. Creation and annihilation operators** 333
   - **5.2.2. The algebra of creation and annihilation operators** 336
   - **5.2.3. Boson and dual boson polynomials** 338
   - **5.2.4. Properties of boson polynomials** 342
   - **5.2.5. Construction of boson polynomials** 343
   - **5.2.6. Symmetry relation for scalar factors of the tensor product $T_m \otimes T_{(p,0)}$** 349
   - **5.2.7. Matrix elements of the operator $T_m(g_{n-1}(\pi/2))$** 350
   - **5.2.8. RC's and scalar factors** 353
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.</td>
<td>Hypergeometric Series Well-Poised in $U(n)$</td>
<td>359</td>
</tr>
<tr>
<td>5.3.1.</td>
<td>Generalized hypergeometric series related to $U(n)$</td>
<td>359</td>
</tr>
<tr>
<td>5.3.2.</td>
<td>Summation formulas for well-poised series</td>
<td>361</td>
</tr>
<tr>
<td>5.3.3.</td>
<td>An analogue of the Whipple formula</td>
<td>366</td>
</tr>
<tr>
<td>5.3.4.</td>
<td>Corollaries of the generalized Whipple identity</td>
<td>369</td>
</tr>
<tr>
<td>5.3.5.</td>
<td>The recurrence relation for $W_q^{(n)}(z)$</td>
<td>370</td>
</tr>
<tr>
<td>5.3.6.</td>
<td>Integral relations for $F^{(n)}$</td>
<td>371</td>
</tr>
<tr>
<td>5.4.</td>
<td>Polynomials Related to Hypergeometric Series Well-Poised in $U(n)$</td>
<td>373</td>
</tr>
<tr>
<td>5.4.1.</td>
<td>Functions $G_q^{(n)}$</td>
<td>373</td>
</tr>
<tr>
<td>5.4.2.</td>
<td>Symmetries of functions $G_q^{(n)}$</td>
<td>376</td>
</tr>
<tr>
<td>5.4.3.</td>
<td>The functions $\mu G_q^{(n)}$</td>
<td>378</td>
</tr>
<tr>
<td>5.4.4.</td>
<td>The functions $G_\lambda^{(n)}$</td>
<td>381</td>
</tr>
<tr>
<td>5.4.5.</td>
<td>The functions $\mu G_q^{(n)}$</td>
<td>383</td>
</tr>
<tr>
<td>5.5.</td>
<td>Basic Hypergeometric Series Well-Poised in $U(n)$ and Their Properties</td>
<td>385</td>
</tr>
<tr>
<td>5.5.1.</td>
<td>Basic hypergeometric functions well-poised in $U(n)$</td>
<td>385</td>
</tr>
<tr>
<td>5.5.2.</td>
<td>Summation formulas</td>
<td>388</td>
</tr>
<tr>
<td>5.5.3.</td>
<td>$q$-Analogue of the generalized Whipple formula</td>
<td>391</td>
</tr>
</tbody>
</table>

Chapter 6:

Gel'fand Hypergeometric Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.</td>
<td>General Hypergeometric Series</td>
<td>393</td>
</tr>
<tr>
<td>6.1.1.</td>
<td>Introduction</td>
<td>393</td>
</tr>
<tr>
<td>6.1.2.</td>
<td>Horn hypergeometric series</td>
<td>395</td>
</tr>
<tr>
<td>6.1.3.</td>
<td>Gel'fand general hypergeometric series</td>
<td>398</td>
</tr>
<tr>
<td>6.1.4.</td>
<td>General hypergeometric series associated with subspaces</td>
<td>399</td>
</tr>
<tr>
<td>6.1.5.</td>
<td>General hypergeometric series with common convergence domain</td>
<td>402</td>
</tr>
<tr>
<td>6.2.</td>
<td>Gel'fand General Hypergeometric Functions</td>
<td>404</td>
</tr>
<tr>
<td>6.2.1.</td>
<td>General hypergeometric systems of equations</td>
<td>404</td>
</tr>
<tr>
<td>6.2.2.</td>
<td>Spaces of general hypergeometric functions</td>
<td>406</td>
</tr>
<tr>
<td>6.2.3.</td>
<td>General hypergeometric functions associated with subspaces</td>
<td>407</td>
</tr>
<tr>
<td>6.2.4.</td>
<td>Generalized hypergeometric functions</td>
<td>410</td>
</tr>
<tr>
<td>6.3.</td>
<td>Gel'fand $q$-Hypergeometric Series and $(\Delta, \mathcal{D})$-Hypergeometric Series</td>
<td>412</td>
</tr>
<tr>
<td>6.3.1.</td>
<td>Horn $q$-hypergeometric series</td>
<td>412</td>
</tr>
</tbody>
</table>
### Table of Contents

6.3.2. General $q$-hypergeometric series .......................... 413
6.3.3. $(\nabla, \mathcal{D})$-Hypergeometric series .................. 415
6.3.4. Difference analogues of hypergeometric functions ........... 417

6.4. Hypergeometric Functions on Real Grassmannians .............. 419
6.4.1. Real Grassmannians ....................................... 419
6.4.2. The Radon transform ...................................... 420
6.4.3. Hypergeometric functions on Grassmannians ................. 423
6.4.4. Hypergeometric systems of equations on Grassmannian ....... 424

6.5. Hypergeometric Functions and Hypergeometric Series on Complex Grassmannians .................. 428
6.5.1. Hypergeometric systems of equations and
       hypergeometric functions on $V$ .............................. 428
6.5.2. General hypergeometric functions on $G_{3,6}(\mathbb{C})$ ...... 432
6.5.3. General hypergeometric series on $Z_{kn}(\mathbb{C})$ ........ 436
6.5.4. Reduction relations ...................................... 438
6.5.5. Hypergeometric functions on strata ........................ 442

6.6. Hypergeometric Functions on Strata of Grassmannian $G_{3,6}(\mathbb{C})$ .......................... 444
6.6.1. Strata of Grassmannian $G_{3,6}(\mathbb{C})$ .................. 444
6.6.2. General hypergeometric functions in
       neighborhoods of one-orbit strata .......................... 446
6.6.3. Bases of spaces of hypergeometric functions on
       nondegenerate strata ....................................... 448
6.6.4. Hypergeometric functions on strata of type $A$ ............ 449
6.6.5. Hypergeometric functions on strata of type $B$ ............ 453
6.6.6. Hypergeometric functions on Grassmannian $G_{2,4}(\mathbb{C})$ 459
6.6.7. Hypergeometric functions on strata of type $C$ ............ 459

Bibliography .................................................. 463
Supplementary Bibliography ..................................... 484
Bibliography Notes ............................................. 488
Subject Index .................................................. 494