Ideas and Methods
of Supersymmetry and Supergravity

or
A Walk Through Superspace

Ioseph L Buchbinder and Sergei M Kuzenko

Tomsk State University, Russia

Institute of Physics Publishing
Bristol and Philadelphia
# Contents

Preface xvii

1 Mathematical Background 1

1.1 The Poincaré group, the Lorentz group 1
   1.1.1 Definitions 1
   1.1.2 Useful decomposition in $SO(3,1)^\dagger$ 3
   1.1.3 Universal covering group of the Lorentz group 4
   1.1.4 Universal covering group of the Poincaré group 6

1.2 Finite-dimensional representations of $Spin(3,1)$ 7
   1.2.1 Connection between representations of $SO(3,1)^\dagger$ and $SL(2,\mathbb{C})$ 7
   1.2.2 Construction of $SL(2,\mathbb{C})$ irreducible representations 11
   1.2.3 Invariant Lorentz tensors

1.3 The Lorentz algebra 13

1.4 Two-component and four-component spinors 18
   1.4.1 Two-component spinors 18
   1.4.2 Dirac spinors 19
   1.4.3 Weyl spinors 21
   1.4.4 Majorana spinors 21
   1.4.5 The reduction rule and the Fierz identity 22
   1.4.6 Two-component and four-component bi-linear combinations 23

1.5 Representations of the Poincaré group 23
   1.5.1 The Poincaré algebra 23
   1.5.2 Field representations 26
   1.5.3 Unitary representations 26
   1.5.4 Stability subgroup 27
   1.5.5 Massive irreducible representations 28
   1.5.6 Massless irreducible representations 30
2 Supersymmetry and Superspace

2.0 Introduction: from $\mathbb{R}^{p|q}$ to supersymmetry 117
2.1 Superalgebras, Grassmann shells and super Lie groups 121
   2.1.1 Superalgebras 122
   2.1.2 Examples of superalgebras 124
   2.1.3 The Grassmann shell of a superalgebra 125
   2.1.4 Examples of Berezin superalgebras and super Lie algebras 128
   2.1.5 Representations of (Berezin) superalgebras and super Lie algebras 132
   2.1.6 Super Lie groups 135
   2.1.7 Unitary representations of real superalgebras 137
2.2 The Poincaré superalgebra 138
   2.2.1 Uniqueness of the $N = 1$ Poincaré superalgebra 138
   2.2.2 Extended Poincaré superalgebras 141
   2.2.3 Matrix realization of the Poincaré superalgebra 143
   2.2.4 Grassmann shell of the Poincaré superalgebra 144
   2.2.5 The super Poincaré group 145
2.3 Unitary representation of the Poincaré superalgebra 146
   2.3.1 Positivity of energy 146
   2.3.2 Casimir operators of the Poincaré superalgebra 147
   2.3.3 Massive irreducible representations 149
   2.3.4 Massless irreducible representations 152
   2.3.5 Superhelicity 153
   2.3.6 Equality of bosonic and fermionic degrees of freedom 154
2.4 Real superspace $\mathbb{R}^{4|4}$ and superfields 155
   2.4.1 Minkowski space as the coset space $\Pi/\text{SO}(3,1)$ 155
   2.4.2 Real superspace $\mathbb{R}^{4|4}$ 157
   2.4.3 Supersymmetric interval 160
   2.4.4 Superfields 160
   2.4.5 Superfield representations of the super Poincaré group 162
2.5 Complex superspace $\mathbb{C}^{4|2}$, chiral superfields and covariant derivatives 165
   2.5.1 Complex superspace $\mathbb{C}^{4|2}$ 166
   2.5.2 Holomorphic superfields 167
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3 $\mathbb{R}^{4</td>
<td>4}$ as a surface in $\mathbb{C}^{4</td>
</tr>
<tr>
<td>2.5.4 Chiral superfields</td>
<td>169</td>
</tr>
<tr>
<td>2.5.5 Covariant derivatives</td>
<td>170</td>
</tr>
<tr>
<td>2.5.6 Properties of covariant derivatives</td>
<td>171</td>
</tr>
<tr>
<td>2.6 The on-shell massive superfield representations</td>
<td>172</td>
</tr>
<tr>
<td>2.6.1 On-shell massive superfields</td>
<td>173</td>
</tr>
<tr>
<td>2.6.2 Extended super Poincaré algebra</td>
<td>174</td>
</tr>
<tr>
<td>2.6.3 The superspin operator</td>
<td>175</td>
</tr>
<tr>
<td>2.6.4 Decomposition of $\mathcal{H}^{(0)}_{(A,B)}$ into irreducible representations</td>
<td>176</td>
</tr>
<tr>
<td>2.6.5 Projection operators</td>
<td>179</td>
</tr>
<tr>
<td>2.6.6 Real representations</td>
<td>179</td>
</tr>
<tr>
<td>2.7 The on-shell massless superfield representations</td>
<td>181</td>
</tr>
<tr>
<td>2.7.1 Consistency conditions</td>
<td>181</td>
</tr>
<tr>
<td>2.7.2 On-shell massless superfields</td>
<td>182</td>
</tr>
<tr>
<td>2.7.3 Superhelicity</td>
<td>185</td>
</tr>
<tr>
<td>2.8 From superfields to component fields</td>
<td>186</td>
</tr>
<tr>
<td>2.8.1 Chiral scalar superfield</td>
<td>186</td>
</tr>
<tr>
<td>2.8.2 Chiral tensor superfield of Lorentz type $(n/2,0)$</td>
<td>188</td>
</tr>
<tr>
<td>2.8.4 Linear real scalar superfield</td>
<td>191</td>
</tr>
<tr>
<td>2.9 The superconformal group</td>
<td>191</td>
</tr>
<tr>
<td>2.9.1 Superconformal transformations</td>
<td>192</td>
</tr>
<tr>
<td>2.9.2 The supersymmetric interval and superconformal transformations</td>
<td>194</td>
</tr>
<tr>
<td>2.9.3 The superconformal algebra</td>
<td>195</td>
</tr>
<tr>
<td>3 Field Theory in Superspace</td>
<td>198</td>
</tr>
<tr>
<td>3.1 Supersymmetric field theory</td>
<td>198</td>
</tr>
<tr>
<td>3.1.1 Quick review of field theory</td>
<td>198</td>
</tr>
<tr>
<td>3.1.2 The space of superfield histories; the action superfunctional</td>
<td>201</td>
</tr>
<tr>
<td>3.1.3 Integration over $\mathbb{R}^{4</td>
<td>4}$ and superfunctional derivatives</td>
</tr>
<tr>
<td>3.1.4 Local supersymmetric field theories</td>
<td>208</td>
</tr>
<tr>
<td>3.1.5 Mass dimensions</td>
<td>211</td>
</tr>
<tr>
<td>3.1.6 Chiral representation</td>
<td>211</td>
</tr>
<tr>
<td>3.2 Wess–Zumino model</td>
<td>213</td>
</tr>
<tr>
<td>3.2.1 Massive chiral scalar superfield model</td>
<td>213</td>
</tr>
<tr>
<td>3.2.2 Massless chiral scalar superfield model</td>
<td>215</td>
</tr>
<tr>
<td>3.2.3 Wess–Zumino model</td>
<td>215</td>
</tr>
<tr>
<td>3.2.4 Wess–Zumino model in component form</td>
<td>216</td>
</tr>
</tbody>
</table>
3.2.5 Auxiliary fields 217
3.2.6 Wess–Zumino model after auxiliary field eliminations 218
3.2.7 Generalization of the model 220

3.3 Supersymmetric nonlinear sigma-models 221
3.3.1 Four-dimensional $\sigma$-models 221
3.3.2 Supersymmetric $\sigma$-models 222
3.3.3 Kähler manifolds 224
3.3.4 Kähler geometry and supersymmetric $\sigma$-models 226

3.4 Vector multiplet models 228
3.4.1 Massive vector multiplet model 228
3.4.2 Massless vector multiplet model 230
3.4.3 Wess–Zumino gauge 230
3.4.4 Supersymmetry transformations 232
3.4.5 Super Lorentz gauge 233

3.5 Supersymmetric Yang–Mills theories 233
3.5.1 Supersymmetric scalar electrodynamics 234
3.5.2 Supersymmetric spinor electrodynamics 237
3.5.3 Non-Abelian gauge superfield 238
3.5.4 Infinitesimal gauge transformations 239
3.5.5 Super Yang–Mills action 241
3.5.6 Super Yang–Mills models 243
3.5.7 Real representation 244

3.6 Geometric approach to super Yang–Mills theories 245
3.6.1 Complex and $c$-number shells of compact Lie groups 245
3.6.2 $K$-supergroup and $\Lambda$-supergroup 247
3.6.3 Gauge superfield 249
3.6.4 Gauge covariant derivatives 251
3.6.5 Matter equations of motion 255
3.6.6 Gauge superfield dynamical equations 255

3.7 Classically equivalent theories 257
3.7.1 Massive chiral spinor superfield model 257
3.7.2 Massless chiral spinor superfield model 259
3.7.3 Superfield redefinitions 261

4 Quantized Superfields 263
4.1 Picture-change operators 263
4.1.1 Functional supermatrices 264
4.1.2 Superfunctional supermatrices 266
4.1.3 (Super) functional derivatives 271