Absolutely Summing Operators

Joe Diestel
Department of Mathematics and Computer Science
Kent State University

Hans Jarchow
Mathematisches Institut
Universität Zürich

Andrew Tonge
Department of Mathematics and Computer Science
Kent State University
CONTENTS

Introduction xi

Notation xiii

1. Unconditional and Absolute Summability in Banach Spaces 1

THE DVORETZKY - ROGERS THEOREM 1
Absolutely convergent series are unconditionally convergent in Banach spaces, Dvoretzky - Rogers Theorem, Coincidence of absolute and unconditional summability only in finite dimensional spaces

UNCONDITIONAL CONVERGENCE AND THE ORLICZ - PETTIS THEOREM 4
Simple characterizations of unconditional summability, Bounded Multiplier Test, Schur's ℓ_1 Theorem, Orlicz - Pettis Theorem, Omnibus Theorem on unconditional summability

KHINCHIN'S INEQUALITY 9
Rademacher functions, Khinchin's Inequality, Orlicz's Theorem on unconditional summability in L_1, Span of the Rademacher functions in $L_p[0,1]$

GROTHENDIECK'S INEQUALITY 15
Absolutely summing operators, Grothendieck's Theorem on operators from ℓ_1 to ℓ_2, Grothendieck's Inequality, Grothendieck's Theorem on finite dimensional spaces

NOTES AND REMARKS 19

2. Fundamentals of p-Summing Operators 31

DEFINITION 31
p-summing operators, p-summing norm

VECTOR-VALUED SEQUENCE SPACES 32
Strong ℓ_p sequences, Weak ℓ_p sequences, Characterization of p-summing operators

CONSTRUCTIONS OF p-SUMMING OPERATORS 36
Finite rank operators, The Banach ideal of p-summing operators, Injectivity, Inclusion Theorem

BASIC EXAMPLES 40
Multiplication operators, Formal inclusion operators, Diagonal operators, Embeddings of function spaces, Kernel operators

DOMINATION AND FACTORIZATION 43
Pietsch Domination Theorem, Pietsch Factorization Theorem, Operators from and to $C(K)$-spaces, 2-summing operators

SOME CONSEQUENCES 49
Weak compactness and complete continuity of p-summing operators, Weak Dvoretzky - Rogers Theorem, p-summing character of biadjoints and adjoints

COMPOSITION 52

NOTES AND REMARKS 55

3. Summing Operators on L_p-Spaces 60

L_p-SPACES 60
Operators from L_1-spaces to L_2-spaces are 1-summing, Approximation in $L_p(\mu)$ and $C(K)$, $L_p(\mu)$ and $C(K)$ as basic examples of L_p-spaces

OPERATORS ON L_∞-SPACES 64
Operators from L_∞-spaces to L_p-spaces ($1 \leq p \leq 2$) are 2-summing

SOME APPLICATIONS 66
Quotients of $C(K)$ which are subspaces of L_1, Coincidence of 2-summing and 1-summing operators on subspaces of L_p ($1 \leq p \leq 2$), uniqueness of unconditional basis in ℓ_1,
$L_1[0,1]$ has no unconditional basis, Coincidence of q-summing and 2-summing operators on subspaces of L_p for $1 \leq p \leq 2 < q < \infty$, Extrapolation Theorem

NOTES AND REMARKS 73

4. Operators on Hilbert Spaces and Summing Operators 76

COMPACT HILBERT SPACE OPERATORS 76
Spectral Theorem, Orthonormal Representation, Approximation Numbers

SCHATTEN-VON NEUMANN CLASSES 80
General Theory, Hilbert-Schmidt operators

HILBERT-SCHMIDT OPERATORS AND SUMMING OPERATORS 84
Coincidence with 2-summing operators, with p-summing operators, Characterization by factorization

EXTENSION PROPERTY 85
Injective Banach spaces, Π_2-Extension Theorem, Kadets-Snobar Theorem

ADJOINTS OF 2-SUMMING OPERATORS 88
NOTES AND REMARKS 90

5. p-Integral Operators 95

DEFINITION AND ELEMENTARY PROPERTIES 95
p-integral operators, Banach ideal property, strictly p-integral operators

RELATIONS TO p-SUMMING OPERATORS 97
p-integral operators are p-summing, Conditions for the converse, Further cases of coincidence

p-SUMMING OPERATORS FAILING TO BE p-INTEGRAL 99

FURTHER STRUCTURAL RESULTS 104
p-integrality of second adjoints, The case $p=1$, Composition of summing and integral operators

ORDER BOUNDEDNESS 107
Definitions, $L_p(\mu)$-valued order bounded operators are p-integral, Converse for $p=1$, Operators with p-summing adjoint

P-NUCLEAR OPERATORS 111
Various characterizations of p-nuclear operators, Banach ideal property

RELATIONS TO INTEGRAL OPERATORS 114
p-nuclear operators are p-integral, Cases of coincidence, Factorization, Composition of summing and nuclear operators

HILBERT SPACE OPERATORS 118
p-nuclear and p-integral operators on Hilbert space, Composition of 2-summing operators

NOTES AND REMARKS 119

6. Trace Duality 125

TRACE 125
Trace and trace duality in finite dimensions

DUALITY FOR SCHATTEN-VON NEUMANN CLASSES 126
Composition Theorem, Trace and duality for Schatten-von Neumann classes

BANACH IDEALS 130
Operator ideals and their norms, Banach ideals, Comparison

ADJOINT IDEALS 132
Adjoint ideals, Biadjoint criterion

MAXIMAL IDEALS 134
Ordering Banach ideals, Maximality, Maximality and adjoints, Maximality of p-integral operators, Adjoints of p-integral operators, Maximality of q-summing operators, Minimality of p-nuclear operators, Characterization of L_∞-spaces
Contents

APPLICATIONS

Lewis' Theorem, Auerbach's Lemma, John's ellipsoids, Carathéodory's Theorem

NOTES AND REMARKS

143

7. 2-Factorable Operators

GENERALITIES

The Banach ideal of p-factorable operators, adjoints, the case p=2

MAXIMALITY OF \mathcal{P}_2, \mathcal{P}_2^*

154

RELATIONS WITH GROTHENDIECK'S INEQUALITY

Matricial characterization, Preparations for Maurey's Extension Theorem

2-DOMINATED OPERATORS

Definition, Maximality, Trace duality of 2-dominated and 2-factorable operators, Further characterizations

NOTES AND REMARKS

156

8. Ultraproducts and Local Reflexivity

GENERALITIES ON ULTRAPRODUCTS

Ultraproduct of Banach spaces and operators, Ultrapowers, Ultraproducts of finite dimensional spaces

SOME STABILITY PROPERTIES

Banach lattices, $L_p(\mu)$-spaces, $C(K)$-spaces, Banach algebras and ultraproducts

ULTRAPRODUCTS AND FINITE DIMENSIONAL STRUCTURE

Banach spaces as subspaces of ultraproducts of finite dimensional subspaces, Representation of operators by ultraproducts of finite dimensional operators

FINITE REPRESENTABILITY

Concepts, Relation with ultraproducts, Application to $L_p(\mu)$- and $C(K)$-spaces

LOCAL REFLEXIVITY

Helly's Lemma, Principle of Local Reflexivity, Application to biduals

NOTES AND REMARKS

172

9. p-Factorable Operators

MAXIMALITY OF \mathcal{P}_p

Maximality, Inclusions

DUAL IDEALS

Definition, Adjoins and maximality of dual ideals

q-DOMINATED OPERATORS

Definition and characterizations, Maximality, Trace duality of p-factorable and p^*-dominated operators

PROOF OF THE MAIN RESULT

Ky Fan's Lemma

APPLICATIONS

Characterization of complemented subspaces, subspaces and quotients of $L_p(\mu)$-spaces, Extensions of p-factorable operators

NOTES AND REMARKS

186

10. (q,p)-Summing Operators

SOME BASIC PROPERTIES

Fundamentals, Banach ideal property, $(q,2)$-summing operators and Schatten-von Neumann classes, Inclusion theorem, Dvoretzky-Rogers Theorem

OPERATORS ON L_∞-SPACES

Operators from L_∞ to L_p, $p>2$, Results of interpolation and factorization for (q,p)-summing operators on $C(K)$-spaces, Coincidence of $(q,1)$-summing and (q,p)-summing operators on $C(K)$-spaces $(q>p)$, Applications

NOTES AND REMARKS

199

Notes and Remarks

195

10. (q,p)-Summing Operators

SOME BASIC PROPERTIES

Fundamentals, Banach ideal property, $(q,2)$-summing operators and Schatten-von Neumann classes, Inclusion theorem, Dvoretzky-Rogers Theorem

OPERATORS ON L_∞-SPACES

Operators from L_∞ to L_p, $p>2$, Results of interpolation and factorization for (q,p)-summing operators on $C(K)$-spaces, Coincidence of $(q,1)$-summing and (q,p)-summing operators on $C(K)$-spaces $(q>p)$, Applications

NOTES AND REMARKS

207
Contents

11. Type and Cotype: The Basics 211

- Kahane's Inequality
- **Randomized Sums**
 - Fundamentals, Lévy's Inequality
- **Rademacher Sums**
- **Rademacher Sums in \(\ell_r \)**
 - Proof of Kahane's Inequality
- **Type and Cotype**
 - Definitions, Type and Cotype of \(\mathcal{L}_r \)-spaces, Permanence Properties, Type and cotype of Lebesgue - Bochner spaces
- **Summing Operators**
 - Cotype and inclusion theorems for summing operators, Cotype and summing operators on \(C(K) \)-spaces, Orlicz's Theorem and cotype, Subspaces of \(L_1 \) having type >1
- **Notes and Remarks**

12. Randomized Series and Almost Summing Operators 230

- **Randomized Series**
 - Almost sure summability, Standard characterizations
- **Rademacher Series**
 - Contraction Principle, Almost sure summability and convergence in \(L_p(X) \), The Banach space \(\text{Rad}(X) \), Relations to type and cotype
- **Almost Summing Operators**
 - Definition, \(p \)-summing operators are almost summing, Almost summing operators and cotype, Ideal properties of almost summing operators, Type 2 and almost summing operators
- **Gaussian Variables**
- **Applications to Almost Summing Operators**
 - Characterization of almost summing operators using Gaussian variables, The \(\gamma \)-summing norm, 2-dominated and almost summing operators
- **Some Consequences**
 - Kwapien's Theorem, Maurey's Extension Theorem, Applications
- **Gaussian Type and Cotype**
 - Definitions, Relations to type and cotype
- **The Maurey - Rosenthal Theorem**
 - Statement of the theorem, A dilation theorem, Bennett - Maurey - Nahoum decomposition of unconditionally summable sequences in \(L_1 \)
- **Notes and Remarks**

13. K-Convexity and B-Convexity 258

- **K-Convexity**
 - Definitions, Uniform containment of \(\ell_1^n \)'s
- **B-Convexity**
 - Fundamentals, Characterization by uniform containment of \(\ell_1^n \)'s, B-convexity and duality, B-convexity and type
- **Equivalence of B- and K-Convexity**
 - Semigroups of operators, Beurling - Kato Theorem, Proof of the main theorem
- **Some Consequences**
 - Duality between type and cotype in K-convex spaces, reflexive subspaces of \(L_1 \)
- **Notes and Remarks**
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Spaces with Finite Cotype</td>
<td>283</td>
</tr>
<tr>
<td>Finite cotype is equivalent to non-uniform containment of ℓ_q^n's</td>
<td></td>
</tr>
<tr>
<td>DVORETZKY - ROGERS AGAIN</td>
<td>283</td>
</tr>
<tr>
<td>FACTORING FORMAL IDENTITIES</td>
<td>286</td>
</tr>
<tr>
<td>THE MAIN THEOREM</td>
<td>289</td>
</tr>
<tr>
<td>Cotype versus finite factorization and Orlicz's Theorem, Cotype numbers,</td>
<td></td>
</tr>
<tr>
<td>Cotype numbers of Lebesgue-Bochner spaces, Proofs</td>
<td></td>
</tr>
<tr>
<td>BRUNEL-SUCHESTON AFFAIRS</td>
<td>298</td>
</tr>
<tr>
<td>Ramsey's Theorem, Brunel-Sucheston Theorem, Invariance under spreading</td>
<td></td>
</tr>
<tr>
<td>NOTES AND REMARKS</td>
<td>303</td>
</tr>
<tr>
<td>15. Weakly Compact Operators on $C(K)$-Spaces</td>
<td>309</td>
</tr>
<tr>
<td>CHARACTERIZATION OF WEAKLY COMPACT OPERATORS</td>
<td>309</td>
</tr>
<tr>
<td>AN APPROXIMATION SCHEME</td>
<td>311</td>
</tr>
<tr>
<td>Approximation by p-summing operators, Characterizations and properties</td>
<td></td>
</tr>
<tr>
<td>ULTRAPOWER STABILITY</td>
<td>313</td>
</tr>
<tr>
<td>Property (H), Type and Cotype, Rosenthal's Theorem on reflexive subspaces of L_1</td>
<td></td>
</tr>
<tr>
<td>SPACES VERIFYING GROTHENDIECK'S THEOREM</td>
<td>316</td>
</tr>
<tr>
<td>Subspaces of $C(K)$ leading to reflexive quotients, Kisliakov's Lemma, Finite cotype is a three space property, Grothendieck's Theorem for quotients of L_1 by a reflexive subspace</td>
<td></td>
</tr>
<tr>
<td>NOTES AND REMARKS</td>
<td>318</td>
</tr>
<tr>
<td>16. Type and Cotype in Banach Lattices</td>
<td>326</td>
</tr>
<tr>
<td>FUNCTIONAL CALCULUS</td>
<td>326</td>
</tr>
<tr>
<td>Abstract M-spaces, Kakutani's Representation Theorem, Khinchin's Inequality in Banach lattices, Complexification of a Banach lattices</td>
<td></td>
</tr>
<tr>
<td>(q,p)-CONCAVE OPERATORS</td>
<td>330</td>
</tr>
<tr>
<td>Definition, Characterization via $(q,1)$-summing operators, Cotype of a Banach lattice, Maurey-Khinchin Inequality</td>
<td></td>
</tr>
<tr>
<td>THE RÔLE OF DISJOINTNESS</td>
<td>333</td>
</tr>
<tr>
<td>$(q,1)$-summing operators on $C(K)$ via disjointly supported functions, Cotype q $(2<q<\infty)$ of a Banach lattice is determined on disjoint vectors, Maurey-Khinchin Inequality and finite cotype, Order bounded and almost summing operators</td>
<td></td>
</tr>
<tr>
<td>TYPE AND CONVEXITY</td>
<td>340</td>
</tr>
<tr>
<td>(p,q)-convex operators, Duality with $(p^,q^)$-concavity, Type of Banach lattices</td>
<td></td>
</tr>
<tr>
<td>NOTES AND REMARKS</td>
<td>341</td>
</tr>
<tr>
<td>17. Local Unconditionality</td>
<td>344</td>
</tr>
<tr>
<td>Unconditional basis, Unconditional basis constant</td>
<td></td>
</tr>
<tr>
<td>LOCAL UNCONDITIONAL STRUCTURE</td>
<td>344</td>
</tr>
<tr>
<td>Definitions, Banach lattices have l.u.st., X has l.u.st. iff X^{**} is complemented in a Banach lattice, l.u.st. and duality</td>
<td></td>
</tr>
<tr>
<td>THE GORDON - LEWIS INEQUALITY</td>
<td>349</td>
</tr>
<tr>
<td>GL-SPACES</td>
<td>350</td>
</tr>
<tr>
<td>Definitions and duality</td>
<td></td>
</tr>
<tr>
<td>GL-SPACES AND COTYPE</td>
<td>352</td>
</tr>
<tr>
<td>GL-spaces of cotype 2, Duality of type and cotype in GL-spaces</td>
<td></td>
</tr>
<tr>
<td>$\Lambda(2)$-SETS</td>
<td>355</td>
</tr>
</tbody>
</table>
18. Summing Algebras

p-SUMMING ALGEBRAS
Definitions, Elementary properties and examples

POLYNOMIAL INEQUALITIES
Polynomials, Norms of polynomials, Symmetric multilinear forms, Quotients of p-summing algebras

Q-ALGEBRAS AND OPERATOR ALGEBRAS
Q-Algebras and quotients of 1-summing algebras, Quotient algebras of uniform algebras are operator algebras

A COMMUTATIVE NON-OPERATOR ALGEBRA
The Wiener algebra is not an operator algebra

FAILURE OF THE MANY VARIABLE VON NEUMANN INEQUALITY

A COMMUTATIVE NON-Q OPERATOR ALGEBRA

2-SUMMING ALGEBRAS AND OPERATOR ALGEBRAS
2-summing algebras are operator algebras

Strictly p-SUMMING ALGEBRAS
Strictly p-summing algebras are uniform algebras

NOTES AND REMARKS

19. Dvoretzky's Theorem and Factorization of Operators

Dvoretzky's Theorem, Factorizing Hilbert-Schmidt operators, Characterization of K-convexity

FRÉCHET DERIVATIVES OF CONVEX FUNCTIONS

GROUP ACTIONS AND INVARIANT MEASURES

ACTIONS OF THE ORTHOGONAL GROUP
Action on spheres, on Grassmannians

PROOF OF DVORETZKY’S THEOREM
Dvoretzky-Rogers norms, Proof of the theorem, Cotype of spaces of compact operators, Type of spaces of nuclear operators

BASIC SEQUENCES
Special blocking of basic sequences

FACTORIZATION
Factorization of compact Hilbert space operators through subspaces of arbitrary Banach spaces, Application to Hilbert-Schmidt operators, Generalizations

COMPLEMENTATION
Cotype 2 numbers and γ-summing norm, Existence of finite rank projections of nice norms

K-CONVEXITY
Geodesic Metric, Isoperimetric Inequality, Lévy's Lemma, X is K-convex iff it contains the ℓ₂'s uniformly and uniformly complemented

THE ISOPERIMETRIC INEQUALITY
Caps, Qualitative version of the Isoperimetric Inequality, Blaschke's Selection Theorem, Spherical symmetrization

NOTES AND REMARKS

References

Author Index

Subject Index