CONTENTS

1. An Introduction to Monte Carlo Methods 3
 1.1. Electron Beam Interaction—The Problem 3
 1.2. The Monte Carlo Method 4
 1.3. Brief History of Monte Carlo Modeling 5
 1.4. About This Book 7

2. Constructing a Simulation 9
 2.1. Introduction 9
 2.2. Describing the Problem 9
 2.3. Programming the Simulation 12
 2.4. Reading a PASCAL Program 13
 2.5. Running the Simulation 23

3. The Single Scattering Model 25
 3.1. Introduction 25
 3.2. Assumptions of the Single Scattering Model 25
 3.3. The Single Scattering Model 26
 3.4. The Single Scattering Monte Carlo Code 37
 3.5. Notes on the Procedures and Functions Used in the Program 46
 3.6. Running the Program 50

4. The Plural Scattering Model 56
 4.1. Introduction 56
 4.2. Assumptions of the Plural Scattering Model 56
 4.3. The Plural Scattering Monte Carlo Code 62
 4.4. Notes on the Procedures and Functions Used in the Program 71
 4.5. Running the Program 75

5. The Practical Application of Monte Carlo Models 77
 5.1. General Considerations 77
 5.2. Which Type of Monte Carlo Model Should Be Used? 77
5.3. Customizing the Generic Programs 78
5.4. The "All Purpose" Program 79
5.5. The Applicability of Monte Carlo Techniques 79

6. Backscattered Electrons 81
6.1. Backscattered Electrons 81
6.2. Testing the Monte Carlo Models of Backscattering 81
6.3. Predictions of the Monte Carlo Models 90
6.4. Modeling Inhomogeneous Materials 97
6.5. Notes on the Program 105
6.6. Incorporating Detector Geometry and Efficiency 111

7. Charge Collection Microscopy and Cathodoluminescence 114
7.1. Introduction 114
7.2. The Principles of EBIC and C/L Image Formation 114
7.3. Monte Carlo Modeling of Charge Collection Microscopy 119

8. Secondary Electrons and Imaging 134
8.1. Introduction 134
8.2. First Principles—SE Models 136
8.3. The Fast Secondary Model 142
8.4. The Parametric Model 156

9. X-ray Production and Microanalysis 174
9.1. Introduction 174
9.2. The Generation of Characteristic X-rays 174
9.3. The Generation of Continuum X-rays 175
9.4. X-ray Production in Thin Films 177
9.5. X-ray Production in Bulk Samples 191

10. What Next in Monte Carlo Simulations? 199
10.1. Improving the Monte Carlo Model 199
10.2. Faster Monte Carlo Modeling 202
10.3. Alternatives to Sequential Monte Carlo Modeling 203
10.4. Conclusions 205

References 207
Index 213