DYNAMICAL SYSTEMS

Stability,
Symbolic Dynamics,
and Chaos

Clark Robinson
Contents

Chapter I. Introduction 1
 1.1 Population Growth Models, One Population 2
 1.2 Iteration of Real Valued Functions as Dynamical Systems 3
 1.3 Higher Dimensional Systems 5
 1.4 Outline of the Topics of the Chapters 9

Chapter II. One Dimensional Dynamics by Iteration 13
 2.1 Calculus Prerequisites 13
 *2.2 Periodic Points 15
 *2.2.1 Fixed Points for the Quadratic Family 20
 *2.3 Limit Sets and Recurrence for Maps 22
 *2.4 Invariant Cantor Sets for the Quadratic Family 26
 *2.4.1 Middle Cantor Sets 26
 *2.4.2 Construction of the Invariant Cantor Set 30
 *2.4.3 The Invariant Cantor Set for $\mu > 4$ 33
 *2.5 Symbolic Dynamics for the Quadratic Map 37
 *2.6 Conjugacy and Structural Stability 40
 *2.7 Conjugacy and Structural Stability of the Quadratic Map 46
 2.8 Homeomorphisms of the Circle 49
 2.9 Exercises 57

Chapter III. Chaos and Its Measurement 63
 3.1 Sharkovskii's Theorem 63
 3.1.1 Examples for Sharkovskii's Theorem 70
 3.2 Subshifts of Finite Type 72
 3.3 Zeta Function 78
 3.4 Period Doubling Cascade 79
 3.5 Chaos 81
 3.6 Liapunov Exponents 86
 3.7 Exercises 88

Chapter IV. Linear Systems 93
 4.1 Review: Linear Maps and the Real Jordan Canonical Form 93
 *4.2 Linear Differential Equations 95
 *4.3 Solutions for Constant Coefficients 97
 *4.4 Phase Portraits 102
 *4.5 Contracting Linear Differential Equations 106
 *4.6 Hyperbolic Linear Differential Equations 111
 *4.7 Topologically Conjugate Linear Differential Equations 113
 *4.8 Nonhomogeneous Equations 115
 *4.9 Linear Maps 116
 4.9.1 Perron-Frobenius Theorem 123
 4.10 Exercises 127

* Core Sections
7.5 Hyperbolic Toral Automorphisms 275
7.5.1 Markov Partitions for Hyperbolic Toral Automorphisms 279
7.5.2 The Zeta Function for Hyperbolic Toral Automorphisms 288

*7.6 Attractors 292
*7.7 The Solenoid Attractor 294
7.7.1 Conjugacy of the Solenoid to an Inverse Limit 299
7.8 The DA Attractor 300
7.8.1 The Branched Manifold 303
*7.9 Plykin Attractors in the Plane 304
7.10 Attractor for the Hénon Map 306
7.11 Lorenz Attractor 309
7.11.1 Geometric Model for the Lorenz Equations 312
7.11.2 Homoclinic Bifurcation to a Lorenz Attractor 318

*7.12 Morse-Smale Systems 318
7.13 Exercises 326

Chapter VIII. Measurement of Chaos in Higher Dimensions 333
8.1 Topological Entropy 333
8.1.1 Proof of Two Theorems on Topological Entropy 343
8.1.2 Entropy of Higher Dimensional Examples 350
8.2 Liapunov Exponents 351
8.3 Sinai-Ruelle-Bowen Measure for an Attractor 356
8.4 Fractal Dimension 356
8.5 Exercises 362

Chapter IX. Global Theory of Hyperbolic Systems 367
9.1 Fundamental Theorem of Dynamical Systems 367
9.1.1 Fundamental Theorem for a Homeomorphism 374
9.2 Stable Manifold Theorem for a Hyperbolic Invariant Set 374
9.3 Shadowing and Expansiveness 377
9.4 Anosov Closing Lemma 381
9.5 Decomposition of Hyperbolic Recurrent Points 382
9.6 Markov Partitions for a Hyperbolic Invariant Set 388
9.7 Local Stability and Stability of Anosov Diffeomorphisms 398
9.8 Stability of Anosov Flows 401
9.9 Global Stability Theorems 403
9.10 Exercises 407

Chapter X. Generic Properties 413
10.1 Kupka-Smale Theorem 413
10.2 Transversality 417
10.3 Proof of the Kupka-Smale Theorem 419
10.4 Necessary Conditions for Structural Stability 425
10.5 Nondensity of Structural Stability 428
10.6 Exercises 430

* Core Sections