CONTENTS

Acknowledgements
page vii

1. Introduction
 1. Condensation and presentism in the historiography of optics
 2. Terminology and outline of this book

2. The debate on colours, 1672–1720
 1. Newton's theory of colours
 a. The modification theory of colours
 b. Newton, a dissident
 2. Reception of Newton's theory of colours
 a. Initial reactions
 b. Reception in Germany

3. Theoretical traditions in physical optics, 1700–45
 1. Development of the emission tradition
 a. Newton's suggestions
 b. De Mairan
 c. 's Gravesande and van Musschenbroek
 2. Development of the medium tradition
 a. Descartes and Huygens
 b. Malebranche and Johann II Bernoulli
 3. The relationship of the optical traditions
 a. Exchange of concepts
 b. The contradiction between the two traditions

4. Euler's 'Nova theoria' (1746)
 1. Euler's place in the medium tradition
 2. Arguments for and against
 3. The content of the theory
 a. Propagation of a pulse
Contents

b. Colours: Pulse sequences 97

c. Reflection and refraction 100

d. Colours: Dispersion and white light 103

e. Colours: Opaque bodies and undercolours 108

4. The influence and significance of the 'Nova theoria' 114

5 The debate in Germany on the nature of light, 1740–95 117

1. Introduction 117

 a. The situation in approximately 1740 119
 b. Survey of the debate, 1740–95 126

2. Early reactions to Euler's argumentation 129

3. Physical phenomena 135

 a. Rectilinear propagation 135
 b. Grazing rays of light 146

4. Colour and phosphorescence 151

5. The chemical effects of light 161

 a. Changes in the agenda for discussion 161
 b. The competition question of 1789 164

6. Chemistry turns the scales 169

6 Epilogue: Optics as a mirror of eighteenth-century science 176

1. Kuhn's outline: Mathematical and experimental traditions 176

2. An addition to the scheme: The natural philosophical tradition 179

3. The three-fold division and eighteenth-century optics 185

 a. The reception of Newton's theory of colours 185
 b. The reception of Euler's wave theory in Germany 186
 c. The chemical turn in physical optics 189

4. On early modern science 190

Notes 193

Bibliography 219

Index 235