A STUDENT'S GUIDE TO
FOURIER TRANSFORMS
WITH APPLICATIONS IN
PHYSICS AND ENGINEERING

J. F. JAMES
Senior Lecturer in Physics
The University of Manchester
Preface

1 Physics and Fourier transforms
 1.1 The qualitative approach
 1.2 Fourier series
 1.3 The amplitudes of the harmonics
 1.4 Fourier transforms
 1.5 Conjugate variables
 1.6 Graphical representations
 1.7 Useful functions
 1.8 Worked examples

2 Useful properties and theorems
 2.1 The Dirichlet conditions
 2.2 Theorems
 2.3 Convolutions and the Convolution Theorem
 2.4 The algebra of convolutions
 2.5 Other theorems
 2.6 Aliasing
 2.7 Worked examples

3 Applications 1: Fraunhofer diffraction
 3.1 Fraunhofer diffraction
 3.2 Examples
 3.3 Polar diagrams
 3.4 Phase and coherence
 3.5 Exercises

4 Applications 2: Signal analysis and communication theory
 4.1 Communication channels
 4.2 Noise
 4.3 Filters
4.4 The Matched Filter Theorem 64
4.5 Modulations 66
4.6 Multiplex transmission along a channel 71
4.7 The passage of some signals through simple filters 72
4.8 The Gibbs Phenomenon 73
5 Applications 3: Spectroscopy and spectral line shapes 78
5.1 Interference spectrometry 78
5.2 The shapes of spectrum lines 83
6 Two-dimensional Fourier transforms 88
6.1 Cartesian coordinates 88
6.2 Polar coordinates 88
6.3 Theorems 90
6.4 Transforms with circular symmetry 90
6.5 Applications 91
6.6 Solutions without circular symmetry 94
7 Multi-dimensional Fourier transforms 96
7.1 The Dirac wall 96
7.2 A 'spike' or 'nail' 98
7.3 The Dirac fence 99
7.4 The 'bed of nails' 101
8 The formal complex Fourier transform 105
9 Discrete and digital Fourier transforms 112
9.1 History 112
9.2 The discrete Fourier transform 113
9.3 The matrix form of the DFT 114
9.4 The BASIC FFT routine 118
Appendix 1 122
Notes and Bibliography 127
Index 129