PROBABILISTIC STRUCTURAL DYNAMICS
Advanced Theory and Applications

Y. K. Lin
Florida Atlantic University

G. Q. Cai
Florida Atlantic University

McGraw-Hill, Inc.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Spectral Analysis</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Stochastic Processes with Uncorrelated and Orthogonal Increments</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Spectral Representation of a Correlation-Stationary Stochastic Process</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Linear Time-Invariant Systems under Additive Excitations of Correlation-Stationary Processes</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Along-Wind Motion of a Multistory Building</td>
<td>13</td>
</tr>
<tr>
<td>2.3.2 Response of an Airplane to Atmospheric Turbulence</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3 Response of an Infinite Beam to Boundary-Layer Turbulence</td>
<td>23</td>
</tr>
<tr>
<td>2.3.4 Bridge Response to Wind Excitations</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Concluding Remarks</td>
<td>34</td>
</tr>
<tr>
<td>2.5 Exercises</td>
<td>35</td>
</tr>
<tr>
<td>3 Evolutionary Spectral Analysis</td>
<td>39</td>
</tr>
<tr>
<td>3.1 Evolutionary Stochastic Processes</td>
<td>39</td>
</tr>
<tr>
<td>3.2 The Random Pulse Train and Its Evolutionary Spectral Representation</td>
<td>41</td>
</tr>
<tr>
<td>3.3 Linear Time-Invariant Systems under Additive Excitations of Evolutionary Stochastic Processes</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1 A Multistory Building under Horizontal Earthquake Excitation</td>
<td>49</td>
</tr>
</tbody>
</table>
3.3.2 A Multiply Supported Pipeline under Seismic Surface Wave Excitations 53
3.4 Evolutionary Kanai-Tajimi-Type Earthquake Models 67
3.5 The Pulse Shape Function for Layered Earth Media 78
3.6 Earthquake Ground Motion in a Layered Earth Medium Due to Propagating Seismic Sources 94
3.7 Concluding Remarks 108
3.8 Exercises 108

4 Markov Processes 111
4.1 Characterization of a Markov Process 111
4.2 The Fokker-Planck Equation 113
4.3 The Wiener Process 122
4.4 The Itô Stochastic Differential Equations 127
4.5 The One-Dimensional Diffusion Process 129
4.5.1 An Example 136
4.6 Approximation of a Physical Process by a Markov Process 138
4.7 Stochastic Averaging and Quasi-Conservative Averaging 144
4.7.1 A Column under Randomly Varying Axial and Transverse Loads 149
4.7.2 Sliding Motion of an Anchored Rigid Block 154
4.7.3 A van der Pol-Type Oscillator 158
4.8 The Stratonovich Stochastic Differential Equations 162
4.9 Concluding Remarks 165
4.10 Exercises 166

5 Exact Solutions for Multidimensional Nonlinear Systems 169
5.1 Stationary Potential 171
5.2 State of Detailed Balance 173
5.2.1 A Nonlinear System under Additive White Noise Excitation 176
5.2.2 A Nonlinearly Damped System under Both Multiplicative and Additive White Noise Excitations 178
5.3 Generalized Stationary Potential 179
5.3.1 Single-Degree-of-Freedom Systems 180
5.3.2 Multi-Degree-of-Freedom Systems 186
5.3.3 Stochastically Perturbed Hamiltonian Systems 189
5.4 Equivalent Stochastic Systems 193
5.5 Concluding Remarks 199
5.6 Exercises 199

6 Stability of Stochastic Systems 201
6.1 Concepts of Stochastic Stability 203
6.2 Asymptotic Sample Stability of Linear Systems under Ergodic Random Excitations with Zero Means and Bounded Variances 205
6.2.1 Multiplicative Excitations with Known Variances and Covariance 209
6.2.2 Multiplicative Excitations with Known Probability Distributions 211
CONTENTS

6.2.3 Additional Knowledge of Multiplicative Excitation Processes 217
6.2.4 Method of Digital Simulation 222

6.3 Asymptotic Sample Stability of Linear Systems under Gaussian White Noise Excitations 223

6.4 Numerical Methods for Obtaining Lyapunov Exponents 230
6.4.1 A Column under Randomly Varying Axial Load 234

6.5 Asymptotic Moment Stability of Linear Systems 237
6.5.1 A Column under Axial White Noise Excitation 238
6.5.2 A Column under Axial Wideband Excitation 239
6.5.3 Coupled Bending-Torsional Stability of a Beam 241
6.5.4 Stability of a Coupled System with Both Low-Damping and High-Damping Modes 246

6.6 Motion Stability of Long-Span Bridges in Turbulent Flow 249

6.7 Asymptotic Stability of Nonlinear Systems 264
6.7.1 A Nonlinearly Damped Oscillator 265
6.7.2 An Oscillator with Nonlinear Restoring Force 270
6.7.3 A Nonlinear System in the Class of Generalized Stationary Potential 275

6.8 Concluding Remarks 276
6.9 Exercises 278

7 Approximate Solutions for Multidimensional Nonlinear Systems 281
7.1 Cumulant-Neglect Closure 283
7.1.1 A Duffing Oscillator under Additive Random Excitation 286
7.2 Method of Weighted Residuals 290
7.2.1 Equivalent Linearization 293
7.2.2 Partial Linearization 294
7.2.3 Dissipation Energy Balancing 295
7.3 Randomly Excited Hysteretic Structures 304
7.3.1 A Hysteretic System under Additive Excitation 313
7.3.2 A Hysteretic Column under Random Ground Excitations 317
7.4 Impulsive Noise Excitation 328
7.4.1 A Duffing Oscillator under Additive Excitation of Impulsive Noise 334
7.4.2 A Nonlinear System under Multiplicative Excitation of Impulsive Noise 341
7.5 Combined Harmonic and Random Excitations 344
7.5.1 A Linear System under an Additive Random Excitation and a Multiplicative Harmonic Excitation 350
7.5.2 A Nonlinearly Damped System under an Additive Random Excitation and a Multiplicative Harmonic Excitation 355
7.6 Concluding Remarks 358
7.7 Exercises 359

8 First-Excursion Failures 363
8.1 The Generalized Pontryagin Equation 364
8.2 Moments of First-Excursion Time of Response Amplitude 367