Introduction to nonlinear science

G. Nicolis
University of Brussels
Contents

Preface

1 Nonlinear behavior in the physical sciences and biology: some typical examples.

1.1 What is nonlinearity? 1
1.2 Nonlinear behavior in classical mechanics 2
1.3 Thermal convection 5
1.4 Nonlinear phenomena in chemistry 12
1.5 Some further examples of chemically-mediated nonlinear behavior 19

Problems 23

2 Quantitative formulation

2.1 Evolution equations in classical mechanics 25
2.2 The macroscopic level: balance equation of a macrovariable 29
2.3 Conserved variables in a one-component system and the equations of fluid dynamics 30
2.4 Nonconserved variables in a multicomponent system and the equations of chemical kinetics 33
2.5 The Bénard problem: quantitative formulation 35
2.6 Some representative chemical models giving rise to nonlinear behavior 40

Problems 45

3 Dynamical systems with a finite number of degrees of freedom

3.1 General orientation 47
3.2 Phase space 49
3.3 Invariant manifolds 51
3.4 Conservative and dissipative systems. Attractors 58
3.5 Stability 61
3.6 The principle of linearized stability 66

Problems 69

4 Linear stability analysis of fixed points 71
4.1 General formulation 71
4.2 Systems involving one variable 75
4.3 Systems involving two variables 77
4.4 Examples of stability analysis of two-dimensional dynamical systems 84
4.5 Three variables and beyond 87

Problems 92

5 Nonlinear behavior around fixed points: bifurcation analysis 94
5.1 Introduction 94
5.2 Expansion of the solutions in perturbation series: the case of zero eigenvalue, $\text{Re } \omega_c = \text{Im } \omega_c = 0$ 96
5.3 The amplitude equation: transcritical bifurcation 98
5.4 The amplitude equation: pitchfork bifurcation 102
5.5 Limit point bifurcation 104
5.6 Kinetic potential, sensitivity, structural stability 105
5.7 The Hopf bifurcation 110
5.8 Cascading bifurcations 114
5.9 Normal forms and resonances 120

Problems 125

6 Spatially distributed systems, broken symmetries, pattern formation 128
6.1 General formulation 128
6.2 The Bénard problem: reference state and linearization of the Boussinesq equations 129
6.3 The Bénard problem: linear stability analysis for free boundaries 133
6.4 Reaction–diffusion systems. The Turing instability 138
6.5 Further comments on linear stability in spatially distributed systems 146
6.6 Bifurcation analysis: general formulation 148
6.7 Bifurcation of two-dimensional rolls in the Bénard problem: the small aspect ratio case 151
6.8 Bifurcation analysis in systems of large spatial extent: complex Landau–Ginzburg equation 156
6.9 Further examples of normal form envelope equations in large systems 161
Problems 169

7 Chaotic dynamics
7.1 The Poincaré map 173
7.2 One-dimensional recurrences: general aspects 178
7.3 Phenomenology of one-dimensional recurrences: illustrations 180
7.4 Tools of chaos theory 188
7.5 Routes to chaos: quantitative formulation 192
7.6 Fully developed chaos: probabilistic description 196
7.7 Error growth, Lyapunov exponents and predictability 205
7.8 The dynamics of symbolic sequences: entropy, master equation 211
7.9 Spatio-temporal chaos 220
Problems 227

Appendices
A1 Proof of the principle of linearized stability for one-variable systems 230
A2 Hopf bifurcation analysis of the Brusselator model 234

References 239

Index 251