PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Shaul Mukamel
University of Rochester
Rochester, New York

New York Oxford
OXFORD UNIVERSITY PRESS
1995
Contents

1. Introduction 3
 Linear versus Nonlinear Spectroscopy 3
 Time- versus Frequency-Domain Techniques 5
 Resonant versus Off-Resonant Response 7

2. Quantum Dynamics in Hilbert Space 15
 Time-Evolution Operator with Time-Independent Hamiltonians 15
 Propagation with Time-Dependent Hamiltonians: Time Ordering 23
 The Time Evolution Operator Revisited 25
 The Interaction Picture 26
 The Magnus Expansion 30
 Green Functions and Causality 31
 Projection Operators, Reduced Equations of Motion, and Effective Hamiltonians 34
 Appendix 2A: Linear Vector Spaces and Operators 40

3. The Density Operator and Quantum Dynamics in Liouville Space 45
 Basic Definitions: Pure and Mixed States 45
 The Reduced Density Operator: The Truth But Not the Whole Truth 49
 Time Evolution of the Density Operator 50
 Liouville Space and Tetradic Notation 53
 Time Evolution Operator in Liouville Space 59
 The Interaction Picture 61
 The Magnus Expansion 63
 Liouville Space Green Functions 64
Projection Operators and the Reduced Density Operator: Effective Liouville Operators 67
The Classical Liouville Equation and the Wigner Representation 68
Concluding Comments 75

4. Quantum Electrodynamics, Optical Polarization, and Nonlinear Spectroscopy 79
 The Minimal Coupling Hamiltonian and the Radiation–Matter Interaction 79
 The Power–Zienau Transformation and the Multipolar Hamiltonian 83
 The Coupled Field and Matter Equations of Motion and the Semiclassical Hamiltonian 88
 The Coupled Maxwell–Liouville Equations 92
 Optical Measurements and the Polarization 93
 Appendix 4A: Transverse and Longitudinal Vector Fields 104
 Appendix 4B: The Multipolar Expansion of the Polarization and Magnetization 106
 Appendix 4C: Green Function Solution of the Maxwell Equation 108

5. Nonlinear Response Functions and Optical Susceptibilities 111
 Correlation Function Expressions for the Response Functions of a Small Particle 111
 Liouville Space Pathways in the Time Domain 118
 Liouville Space Pathways in the Frequency Domain 120
 Nonlocal Expressions for the Optical Response of Extended Systems 123
 Nonlinear Response in Momentum (k) Space 124
 Optical Response of a Homogeneous Medium of Noninteracting Particles 127
 Time versus Frequency Domain Techniques 128
 Why Liouville Space? 131
 Appendix 5A: Wavefunction versus Density-Operator Formulation of the Nonlinear Response 135
 Appendix 5B: Calculating the Response Functions Using the Heisenberg Representation 139

6. The Optical Response Functions of a Multilevel System with Relaxation 143
 Linear Response and the Kramers–Kronig Relations 144
Eigenstates Revisited: Linear Response in Liouville Space 147
Response Functions of a Multilevel Manifold with Relaxation 149
The Nonlinear Response Functions Calculated Using the Wavefunction in Hilbert Space 159
The Nonlinear Response Functions Calculated Using the Heisenberg Equations of Motion 160
The Anharmonic Oscillator Picture for the Optical Polarization 163
$\chi^{(3)}$ with a Realistic Population–Relaxation Matrix 167
Homogeneous, Inhomogeneous, and Intermediate Dephasing 169
Examples of Single-Frequency Techniques 173
Appendix 6A: Reduced Equations of Motion for the Density Operator 176
Appendix 6B: The Optical Bloch Equations 181

7. Semiclassical Simulation of the Optical Response Functions 187
Linear Response of a Two Electronic Level System: Semiclassical Simulations and Phase Averaging 189
Moments of the Linear Absorption 193
Hilbert versus Liouville Space Representation of the Third-Order Response Function 196
Semiclassical Simulations of the Nonlinear Response in Liouville Space: Phase Averaging 199
The Static Limit: Inhomogeneous Broadening and Spectral Diffusion 201
Appendix 7A: The Coherence Green Function 204
Appendix 7B: Derivation of Eqs. (7.19) 206

8. The Cumulant Expansion and the Multimode Brownian Oscillator Model 209
The Condon Approximation for the Optical Response of a Two-Level System 210
The Cumulant Expansion 212
The Spectral Density and Its Symmetries 214
Coupling to Harmonic Vibrations 217
The Multimode Brownian Oscillator Model 227
Additional Applications of the Cumulant Expansion 235
The Inhomogeneous Cumulant Expansion and Semiclassical Simulations 239
Optical Susceptibilities of a Multilevel System Interacting with a Medium with an Arbitrary Timescale 243
Appendix 8A: The Cumulant Expansion for $F(\tau_1, \tau_2, \tau_3, \tau_4)$ 248
Appendix 8B: Absorption and Emission Lineshapes: The Stokes Shift 250
Appendix 8C: Brownian Oscillator Parameters for a Polar Solvent 253
Appendix 8D: Classical Correlation Functions and the Wiener–Khinchin Theorem 255
Appendix 8E: Relation between Classical Correlation Functions and Response Functions 257

Absorption of a Quantum Field 262
Spontaneous Light Emission Spectroscopy 265
Frequency Domain SLE 267
Fluorescence and Raman Spectroscopy 271
Resonant Coherent Raman Spectroscopy 279
Appendix 9A: Spontaneous Light Emission with Spectral Diffusion and Vibrational Relaxation 286

10. Selective Elimination of Inhomogeneous Broadening: Photon Echoes 289
Classification of Time-Domain Resonant Four-Wave Mixing Techniques 295
Two- and Three-Pulse Photon Echo Spectroscopies 299
Impulsive Photon Echoes 301
Brownian Oscillator Analysis of Impulsive Photon Echoes: From Quantum Beats to Spectral Diffusion 304
Spontaneous Light Emission Using Phase-Locked Pulses 310
Appendix 10A: Accumulated Photon Echoes 314
Appendix 10B: Accumulated Photon Echoes with Incoherent Light Sources 316

11. Resonant Gratings, Pump-Probe, and Hole-Burning Spectroscopy 321
Resonant, Non-Time-Ordered, Four-Wave Mixing 323
Partial Control over Time Ordering: Phase-Locked Transient Gratings 324
Sequential Pump-Probe Spectroscopy 326
Impulsive Pump-Probe Spectroscopy and Quantum Beats 328
Hole-Burning Spectroscopy 336
Three-Pulse Phase-Locked Pump-Probe Absorption 339
CONTENTS

Macroscopic versus Microscopic Interference 340
Fourier Transform Relationships 340

12. Wavepacket Dynamics in Liouville Space: The Wigner Representation 345
 Liouville Space-Generating Function for the Linear Response 346
 Generating Functions for Nonlinear Response: Liouville Space
 Pathways 347
 Classical Simulation of Nuclear Wavepackets: Phase-Averaging
 Revisited 349
 Semiclassical Equations of Motion for the Liouville Space Generating
 Functions 351
 Reduced Dynamics of Liouville Space Paths: The Multimode Brownian
 Oscillator Model 356
 Reduced Equations of Motion for Liouville Space Wavepackets 357
 The Doorway–Window Representation of the Nonlinear Response
 Function 359
 Appendix 12A: Eigenstate Expansion of the Liouville Space-Generating
 Functions 364
 Appendix 12B: The Doorway–Window Picture in the Frequency Domain:
 Vibronic State Representation 365

13. Wavepacket Analysis of Nonimpulsive Measurements 369
 The Doorway–Window Picture for Well Separated Pulses 373
 The Snapshot Spectrum and Related Limiting Cases 377
 Nuclear Wavepackets for the Overdamped Brownian Oscillator 385
 Semiclassical Picture of Pump-Probe Spectroscopy in a
 Three-Electronic-Level System 393
 Appendix 13A: Wavepacket Representation of Pump-Probe Spectroscopy
 with Frequency Dispersed Detection 407
 Appendix 13B: Wavepacket Representation of Transient Grating with
 Heterodyne Detection 408

14. Off-Resonance Raman Scattering 411
 Dynamic Approach to Coherent Raman Scattering 414
 The Multimode Brownian Oscillator Model 422
 Effective Hamiltonian for Raman Scattering 424
 Fourier Transform Relationships 430
 Beyond Raman Scattering: Multidimensional Off-Resonant
 Spectroscopy of Liquids 432
Appendix 14A: The Doorway State and the Effective Hamiltonian H_{eff}: Derivation of Eqs. (14.33) 441

15. Polarization Spectroscopy: Birefringence and Dichroism 445
 Rotational Contribution to the Nonlinear Response Function 447
 Vibrational Contribution to Heterodyne-Detected Transient Grating 450
 The Polarization-Dependent Grating Signal 451
 Off-Resonant Birefringence and Dichroism 455
Appendix 15A: Solution of the Rotational Fokker–Planck Equation 458

16. Nonlinear Response of Molecular Assemblies: The Local-Field Approximation 461
 Phenomenological Approach to the Nonlinear Response in Real Space:
 Local-Field and Cascading Corrections 462
 The Local-Field Approximation in \mathbf{k} Space 466
 Microscopic Derivation of the LFA: The Driven Anharmonic Oscillator 469
 Local Field Expressions for Optical Susceptibilities of Homogeneous Systems 475

17. Many-Body and Cooperative Effects in the Nonlinear Response 479
 Green Function Expression for the Optical Response of Molecular Nanostructures with Arbitrary Geometry 483
 Factorized Approximations for the Green Function Solution 488
 Anharmonic Oscillator Real Space Expression for the Optical Response beyond the LFA 491
 Green Function Expression for the Four-Wave Mixing Signal Including Radiative Decay 493
 Optical Susceptibilities of Periodic Structures in k Space 496
 Signatures of Cooperativity: Two-Exciton Resonances and Enhanced Nonlinear Susceptibilities in Molecular Aggregates 498
 Exciton-Population Variables and Exciton Transport 507
 Discussion 513
Appendix 17A: Exciton Dephasing and Relaxation Processes 516
Appendix 17B: Scattering (\mathcal{S}) Matrix Expression for the Two-Exciton Green Function 518
Appendix 17C: Green Function Solution of the Nonlinear Response 520

Index 525