AN INTRODUCTION TO COSMOCHEMISTRY

CHARLES R. COWLEY
Professor of Astronomy, University of Michigan

CAMBRIDGE UNIVERSITY PRESS
Contents

Foreword xi

1 Overview 1
1.1 The Scope of Cosmochemistry 1
1.2 Cosmochemistry and the Four Physical Sciences 2
1.3 A Standard Abundance Distribution 3
1.4 The Chemical History of Planetary Material 6
1.5 Abundances Beyond the Solar System 7
1.6 Two Approaches to Cosmochemistry 8

2 Minerals: An Introduction to the Nomenclature and Chemistry 9
2.1 Introduction 9
2.2 Mineralogy 11
2.3 Some Useful Concepts from Crystallography 12
2.4 A Simplified Mineral Classification 14
2.5 The Common Minerals of Cosmochemistry 16
2.5.1 Oxides 18
2.5.2 The Olivines 19
2.5.3 The Pyroxenes 19
2.5.4 The Feldspars 21
2.6 Mineralogy as a Clue to History: The Bowen Reaction Series; Paragenesis 22
2.7 Problems 26

3 A Brief Introduction to Petrology 27
3.1 Preliminary Remarks 27
3.2 The Classification of Igneous Rocks 28
3.3 Some Terminology Related to the Texture of Rocks 30
3.4 Basalts, Gabbros, and Anorthosites 31
3.5 Phase Diagrams 31
3.6 Formation of the Lunar Highlands: A Petrological Exercise 35
3.7 Problems 38

4 A Résumé of Thermodynamics and Statistical Mechanics 39
4.1 Introductory Remarks 39
4.2 Systems, States, and Variables 39
4.3 Additional State Functions and the Laws of Thermodynamics 41
4.4 How to Tell the Direction of a Chemical Reaction 44
4.5 Calculation of ΔG; Standard States 46
4.6 Free Energy Changes At Arbitrary Pressures 48
4.7 Heat Capacities 52
4.8 Chemical Equilibrium 52
4.9 Statistical Mechanics: Distributions 54
4.10 Boltzmann's postulate: the Connection Between W and the Entropy S 57
4.11 The Particle in a Box: Quantum Cells for Free Particles 59
4.12 Chemical Equilibrium and Statistical Mechanics 61
4.13 Problems 62

5 Condensation Sequences and the Geochemical Classification of the Elements 64
5.1 The Concept of Geochemical Classification 64
5.2 The Siderophile–Lithophile Distinction 68
5.3 The Problem with the Chalcophiles 71
5.4 Molecular Equilibria in the Gas Phase 71
5.5 The Condensation of Solids 76
5.6 The Geochemical Classes of Volatile and Refractory 80
5.7 The Geochemistry of Trace Elements: Ionic Substitution 82
5.8 Problems 88

6 The Theory of the Bulk Composition of the Planets 89
6.1 Geophysical Constraints 89
6.2 Earth Models 91
6.3 The Moon and Terrestrial Planets 94
6.4 The Jovian Planets 96
6.5 A Zero-Order Model for the Solar Nebula 97
6.6 Equilibrium and Disequilibrium Condensation 99
6.7 The Condensation Sequences of Lewis and Coworkers 101
6.8 Difficulties with the Condensation Sequences 104
6.9 Problems 108

7 Meteorites and the Standard Abundance Distribution (SAD) 109
7.1 An Overview 109
7.2 Meteorite Ages 112
7.3 Meteorites and the SAD 116
7.4 The SAD and Nuclear Processes: Overview 119
7.5 Problems 123

8 An Introduction to Isotope Geology with an Emphasis on Meteorites 125
8.1 Introduction 125
8.2 Rubidium–Strontium Dating; Sample and Model Ages 125
8.3 Evolution of the Initial Ratio: $\left(\frac{{}^{87}\text{Sr}}{{}^{86}\text{Sr}}\right)_0$ 128
8.4 Further Remarks on Radioactive Dating 130
8.5 Stable Isotope Geology 131
8.6 Oxygen Anomalies and the Refractory Inclusions of Meteorites 135
8.7 Isotopic Anomalies in the Noble Gases 136
8.8 Aluminum-26 in the Early Solar System 144
8.9 The Nature of the Allende Inclusions 147
8.10 Problems 148
Contents

9 Some Concepts from Nuclear Physics 150
9.1 Introductory Remarks 150
9.2 The Semi-empirical Mass Formula 150
9.3 The One-Particle or Shell Model of the Nucleus 157
9.4 The Classical Forms of Radioactivity, and Fission 165
9.5 Nuclear Reactions and Their Rates 171
9.6 Problems 184

10 Energy Generation in Stars and Nucleosynthesis 186
10.1 Introduction 186
10.2 The Burning of Hydrogen and Helium 187
10.3 Carbon, Oxygen, and Neon Burning 190
10.4 Silicon Burning, Equilibrium, and Quasi-Equilibrium Processes 191
10.5 The Problem of the Light Nuclei: Li, Be, and B 199
10.6 Cosmic Rays and Abundances of LiBeB 203
10.7 Cosmological Production of the Light Elements 206
10.8 Synthesis of Nuclides Beyond the Iron Peak: the s-Process 214
10.9 The Classical r-Process 220
10.10 Additional Mechanisms for the Production of Elements Beyond the Iron Peak 224
10.11 Supernovae and Supernova 1987A 226
10.12 Problems 228

11 Atomic and Molecular Spectra 230
11.1 Introductory Remarks 230
11.2 Atomic Spectra: The Nomenclature of LS Coupling 230
11.3 A Brief Description of the Data Tables 234
11.4 Diatomic Molecules: Rotation and Vibration 237
11.5 Diatomic Molecules: Electronic Structure and Wavelengths 243
11.6 Rotational Structure of Symmetrical Top Molecules 249
11.7 Rotational Structure of Asymmetrical Top Molecules 251
11.8 Nuclear Effects in Atomic and Molecular Spectra: Hyperfine Structure 253
11.9 Problems 258

12 The Analysis of Stellar Spectra 260
12.1 The Identification of Lines in Stellar Spectra 260
12.2 Details of Identification Work 263
12.3 The Analysis of Stellar Spectra: Overview 265
12.4 The Slab Model 270
12.5 Details of the Line Absorption Coefficient 275
12.6 Doppler Broadening of Spectral Lines 276
12.7 The Curve of Growth for Equivalent Widths 278
12.8 Details of the Curve of Growth 281
12.9 The Method of Spectral Synthesis 284
12.10 Problems 287
Contents

13 The Chemistry of Stars and Stellar Systems
- 13.1 The General Framework 289
- 13.2 Spectral Classification 290
- 13.3 The Hertzsprung-Russell (H–R) Diagram 292
- 13.4 Stellar Abundances 297
 - 13.4.1 Population-Related Abundance Patterns 297
 - 13.4.2 Abundance Variations Attributed to *In Situ* Nucleosynthesis 305
 - 13.4.3 Abundance Variations Attributed to Chemical Fractionations 308
- 13.5 Problems 314

14 Cold, Non-stellar Material in Galaxies
- 14.1 Introduction 315
- 14.2 Molecular Clouds 322
- 14.3 The Theory of Interstellar Chemistry 329
- 14.4 Interstellar Grains: Optical Properties 337
- 14.5 Interstellar and Circumstellar Features 344
- 14.6 The Formation of Dust 352
- 14.7 Problems 357

15 Emission-Line Regions and their Chemical Abundances
- 15.1 Emission Regions 359
- 15.2 Planetary and Diffuse Nebulae: The Hydrogen Lines 360
- 15.3 Electron Temperatures and Densities in Emission Regions 366
- 15.4 Determination of Abundances 371
- 15.5 Abundances in Emission Regions 374
- 15.6 Atlas of Simulated Emission Spectra 384
- 15.7 Problems 385

16 Abundances of the Elements in Galaxies
- 16.1 An Introduction to Galactic and Extragalactic Research 387
- 16.2 Basic Data for the Chemical Evolution of the Solar Neighborhood 393
- 16.3 Analytical Models of Chemical Evolution: Basic Relations 395
- 16.4 Stars and the Total Mass 398
- 16.5 The Distribution of Stellar Abundances: Infall 400
- 16.6 Fixing the Model Parameters from Observations 403
- 16.7 The Distribution of Stellar Abundances: Gas Loss 407
- 16.8 Recent Developments in Galactic Chemical Evolution 408
- 16.9 Abundances in Distant Objects 412
- 16.10 Dark Matter in the Universe 414
- 16.11 Problems 416

Appendix

References 434

Index 462