ADVANCES IN
PHARMACOLOGY

Pharmacology of the Blood Brain Barrier: Targeting CNS Disorders

Edited by
THOMAS P. DAVIS
Department of Pharmacology,
College of Medicine, University of Arizona,
Tucson, Arizona, USA

Serial Editor
S. J. ENNA
Department of Molecular and Integrative Physiology,
Department of Pharmacology, Toxicology and Therapeutics,
University of Kansas Medical Center, Kansas City,
Kansas, USA

Managing Editor
LYNN LECOUNT
University of Kansas Medical Center
School of Medicine, Kansas City, Kansas, USA
CONTENTS

Preface xi
Contributors xiii

1. ABC Transporter Regulation by Signaling at the Blood–Brain Barrier: Relevance to Pharmacology 1
 David S. Miller
 1. Introduction 2
 2. ABC Transporters at the Blood–Brain Barrier 4
 3. ABC Transporter Regulation 7
 4. Conclusion 20
 Conflict of Interest 20
 Acknowledgments 20
 References 21

2. P-glycoprotein Trafficking as a Therapeutic Target to Optimize CNS Drug Delivery 25
 Thomas P. Davis, Lucy Sanchez-Covarubias, and Margaret E. Tome
 1. Introduction 26
 2. The BBB/Neurovascular Unit 27
 3. Endothelial Cells and the BBB 27
 4. Transport Across the Brain Barriers 29
 5. P-glycoprotein 29
 6. Drug Delivery to the CNS: Strategies Developed to Circumvent Brain Barrier Sites 34
 7. Inhibition of Brain Barrier Efflux Transporters 35
 8. Conclusion 39
 Conflict of Interest 41
 Acknowledgments 41
 References 41

3. Functional Expression of Drug Transporters in Glial Cells: Potential Role on Drug Delivery to the CNS 45
 Tamima Ashraf, Amy Kao, and Reina Bendayan
 1. Introduction 47
 2. Physiological Role of the BBB and Brain Parenchymal Cellular Compartments 47
3. Functional Expression of Drug Transporters in Glial Cells 48
4. Regulation of Drug Transporters in Glial Cells in the Context of Neuropathologies 84
5. Conclusion 93
Conflicts of Interest 94
Acknowledgments 94
References 94

4. Blood–Brain Barrier Na Transporters in Ischemic Stroke 113
Martha E. O’Donnell
1. Introduction 114
2. Ion Transporters and Channels of the BBB 116
3. BBB Na–K–Cl Cotransport and Na/H Exchange in Ischemic Stroke and Cerebral Edema 119
4. Signaling Mechanisms: Roles of AMP Kinase and p38, JNK and ERK MAP Kinases 126
5. Hormonal and Metabolic Factor Effects on BBB Na Transporter Expression and Activities 132
6. Future Directions 135
7. Conclusion 136
Conflicts of Interest 136
Acknowledgments 136
References 136

5. Transcytosis of Macromolecules at the Blood–Brain Barrier 147
Jane E. Preston, N. Joan Abbott, and David J. Begley
1. Introduction 148
2. Mechanisms of Macromolecule Transcytosis 150
3. Endocytosis in Brain Endothelia 150
4. Vesicle Trafficking and Subcellular Localization in Brain Endothelia 154
5. Recycling of Vesicles to Apical or Basolateral Membranes 155
6. Exocytosis in Endothelia 157
7. Targeting Receptor-Mediated Transport for Drug Delivery to Brain 157
8. Conclusion 159
Conflict of Interest 160
References 160

6. Drug Delivery to the Ischemic Brain 165
Brandon J. Thompson and Patrick T. Ronaldson
1. Introduction 166
2. Pathophysiology of Ischemia 167
3. Drug Delivery to the Hypoxic/Ischemic Brain 179
4. Conclusion 191
Conflict of Interest 192
References 192

7. Delivery of Chemotherapeutics Across the Blood–Brain Barrier: Challenges and Advances 203
Nancy D. Doolittle, Leslie L. Muldoon, Aliana Y. Culp, and Edward A. Neuwelt
1. Introduction 205
2. Blood–Brain Barrier Disruption 205
3. Primary CNS Lymphoma 212
4. Chemoprotection Studies 226
5. Advances in Neuroimaging 230
6. Conclusion 235
Conflict of Interest 236
Acknowledgments 237
References 237

8. Delivery of Antihuman African Trypanosomiasis Drugs Across the Blood–Brain and Blood–CSF Barriers 245
Gayathri N. Sekhar, Christopher P. Watson, Mehmet Fidanboylu, Lisa Sanderson, and Sarah A. Thomas
1. Introduction 246
2. A Brief History of HAT 247
3. Clinical Presentation of the Disease 248
4. Unique Diagnostic Markers 251
5. Vector 252
6. Diagnosis of HAT 253
7. Treatment of HAT 253
8. Parasite Resistance: Is Combination Therapy the Way Forward? 259
9. BBB Transport of Anti-HAT Drugs 260
10. Latest Research Developments 266
11. Conclusion 268
Conflict of Interest 268
Acknowledgments 268
References 268

9. Delivery of Therapeutic Peptides and Proteins to the CNS 277
Therese S. Salameh and William A. Banks
1. Introduction 278
2. Obstacles to Delivering Protein and Peptides to the CNS 278
13. Combination Approaches to Attenuate Hemorrhagic Transformation After tPA Thrombolytic Therapy in Patients with Poststroke Hyperglycemia/Diabetes

Xiang Fan, Yinghua Jiang, Zhanyang Yu, Jing Yuan, Xiaochuan Sun, Shuanglin Xiang, Eng H. Lo, and Xiaoying Wang

1. Introduction
2. Increased Hemorrhagic Transformation After tPA Thrombolytic Therapy
3. Underlying Mechanisms: Multiple Pathological Pathways
4. DM and Hyperglycemia-Mediated Vascular Pathology
5. Ischemic Stroke and BBB Disruption
6. tPA and Extracellular Proteolysis Dysfunction-Mediated BBB Disruption
7. Multiple Pathological Factors and Interactions
8. Combination Approaches in Focal Embolic Stroke Model of Hyperglycemia/Diabetic Rats
9. Conclusion
Conflict of Interest
References

14. Aging, the Metabolic Syndrome, and Ischemic Stroke: Redefining the Approach for Studying the Blood-Brain Barrier in a Complex Neurological Disease

Brandon P. Lucke-Wold, Aric F. Logsdon, Ryan C. Turner, Charles L. Rosen, and Jason D. Huber

1. Introduction
2. Cell Aging
3. Age and the Metabolic Syndrome
4. Linking Metabolic Syndrome and Aging
5. Conclusion
Conflict of Interest
References

15. Drug Abuse and the Neurovascular Unit

Richard D. Egleton and Thomas Abbruscato

1. Introduction
2. Molecular Targets of Common Substances of Abuse
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. The Neurovascular Unit</td>
<td>455</td>
</tr>
<tr>
<td>4. Transport of Drugs of Abuse into the Brain</td>
<td>457</td>
</tr>
<tr>
<td>5. Regulation of the NVU by Drugs of Abuse</td>
<td>459</td>
</tr>
<tr>
<td>6. Conclusion</td>
<td>470</td>
</tr>
<tr>
<td>Conflict of Interest</td>
<td>471</td>
</tr>
<tr>
<td>References</td>
<td>471</td>
</tr>
</tbody>
</table>

Index 481