Chapter 13 Remotely Triggered Drug Release from Gold Nanoparticle-based Systems
Eun-Kyung Lim, Kwangyeol Lee, Yong-Min Huh and Seungjoo Haam

13.1 Introduction 1
13.2 Gold Nanoparticle-based DDSs 2
13.3 Activatable DDSs Based on Gold Nanoparticles 7
 13.3.1 pH-responsive Au-based DDSs 9
 13.3.2 Glutathione-mediated Au-based DDSs 10
 13.3.3 Photo-active and/or Photodynamic Au-based DDSs 10
 13.3.4 Photothermally Mediated Au-based DDSs 14
 13.3.5 Enzymatically Activated Au-based DDSs 20
13.4 Gold Nanoparticle-based Theranostic Systems 21
13.5 Conclusions and Outlook 23
References 23

Chapter 14 Magnetic-responsive Nanoparticles for Drug Delivery
San-Yuan Chen, Shang-Hsiu Hu and Ting-Yu Liu

14.1 Introduction 32
14.2 Hyperthermia Theory of the Magnetic Field 34
14.3 Synthesis and Surface Modification of Magnetic Nanoparticles 37
 14.3.1 Synthesis of Magnetic Nanoparticles 37
 14.3.2 Surface Modification of Magnetic Nanoparticles 38
14.4 Magnetic Nanocarriers for Drug Delivery 40
 14.4.1 Amphiphilic Micelles and Organic Nanoparticles 41
 14.4.2 Temperature-responsive Magnetic Nanocarriers 44
14.5 Nanocarriers with a Magnetic Shell as DDSs 50
 14.5.1 Polymer Drug Carriers with Magnetic Nanoparticle Shells 50
 14.5.2 Mesoporous Silica Capped with Iron-oxide Nanoparticles 51
 14.5.3 Magnetic Single-crystal Shell Drug Nanocarriers 54
Chapter 15 Smart Drug Delivery from Silica Nanoparticles

Montserrat Colilla and Maria Vallet-Regi

15.1 Introduction 63
15.2 Multi-functionality of Mesoporous Silica Nanoparticles to Design Smart DDSs 66
15.2.1 Targeting Agents 66
15.2.2 Polymeric Coatings 68
15.2.3 Magnetic Nanoparticles 72
15.2.4 Stimuli-responsive Drug Delivery 75
15.3 Biocompatibility of Mesoporous Silica Nanoparticles 80
15.4 Future Prospects 81
References 82

Chapter 16 Smart Carbon Nanotubes

Gerard Tobias and Emmanuel Flahaut

16.1 Introduction 90
16.1.1 Carbon Nanotubes: Structure and Properties 90
16.1.2 Carbon Nanotubes in Drug Delivery 91
16.2 Functionalization of Carbon Nanotubes for Biomedical Applications 93
16.2.1 Covalent Functionalization 93
16.2.2 Non-covalent Functionalization 95
16.3 External Attachment of Drugs onto Carbon Nanotubes 96
16.3.1 Delivery of Doxorubicin with Carbon Nanotubes 96
16.3.2 Delivery of Platinum-based Drugs with Carbon Nanotubes 97
16.3.3 Delivery of Other Anticancer Drugs by Carbon Nanotubes 98
16.3.4 Delivery of Other Drugs by Carbon Nanotubes 99
Chapter 16 Encapsulation of Drugs Inside Carbon Nanotubes

16.4 Encapsulation of Drugs Inside Carbon Nanotubes

16.4.1 Carbon Nanotubes as Nanocontainers

16.4.2 Drug Delivery with Filled Carbon Nanotubes

16.5 Toxicity and Environmental Impact of Carbon Nanotubes

16.5.1 Introduction to Toxicity of Carbon Nanotubes

16.5.2 Main Characteristics of Carbon Nanotubes in Terms of Toxicity Investigation

16.5.3 Biological Models

16.5.4 Inhalation

16.5.5 Contamination through the Skin

16.5.6 Translocation

16.5.7 Mechanisms of Protection and Elimination

16.5.8 Genotoxicity

16.5.9 Environmental Impact of Carbon Nanotubes

16.6 Conclusions

References

Chapter 17 Smart Layer-by-Layer Assemblies for Drug Delivery

Svetlana Pavlukhina and Svetlana Sukhishvili

17.1 Introduction

17.2 LbL Substrates and Templates

17.3 LbL Constituents and Architectures

17.4 Drug Incorporation Strategies within LbL Assemblies

17.5 Drug Release Strategies

17.5.1 Diffusion-controlled Release

17.5.2 Hydrolytic Degradation

17.5.3 pH-triggered Release

17.5.4 Salt-triggered Release

17.5.5 Electrochemical and Redox-activated Release

17.5.6 Temperature-triggered Release

17.5.7 Light-triggered Release

17.5.8 Magnetic Field-triggered Release

17.5.9 Ultrasound-triggered Release

17.5.10 Application of Biological Stimuli

17.6 LbL Interfacing Biology

Acknowledgements

References
Chapter 18 pH- and Temperature-responsive Hydrogels in Drug Delivery

Francesco Puoci and Manuela Curcio

18.1 Introduction 153
18.2 pH-responsive Hydrogels for Drug Delivery 155
 18.2.1 pH-responsive Microgels 156
 18.2.2 pH-responsive Nanogels 158
18.3 Temperature-responsive Hydrogels for Drug Delivery 161
 18.3.1 LCST Hydrogels 162
 18.3.2 UCST Hydrogels 168
18.4 Dually Responsive Hydrogels for Drug Delivery 170
18.5 Conclusion 173
Acknowledgements 174
Reference 174

Chapter 19 Elastin-like Hydrogels and Self-assembled Nanostructures for Drug Delivery

José Carlos Rodríguez-Cabello, Israel González de Torre and Guillermo Pinedo

19.1 Introduction 180
19.2 Elastin-like Recombinamers (ELRs) 181
19.3 ELRs-based Drug-delivery Systems 183
 19.3.1 ELRs-based Hydrogels 184
 19.3.2 ELRs Nanoparticles 190
19.4 Conclusion and Future Perspectives 195
References 196

Chapter 20 Multiple Stimuli-responsive Hydrogels Based on α-Amino Acid Residues for Drug Delivery

Mario Casolaro and Ilaria Casolaro

20.1 Introduction 199
20.2 Syntheses 203
20.3 Swelling Properties 204
 20.3.1 Effect of pH and Ions 204
 20.3.2 Effect of the Temperature 209
20.4 Drug Delivery from α-Amino Acid Hydrogels 211
 20.4.1 Loading and Release of Cisplatin 211
 20.4.2 Cytotoxicity of Cisplatin-loaded Hydrogels 214
 20.4.3 Loading and Release of Pilocarpine 217
 20.4.4 Cytotoxicity of Pilocarpine-loaded Hydrogels 220
Chapter 21 Molecularly Imprinted Hydrogels for Affinity-controlled and Stimuli-responsive Drug Delivery 228
C. Alvarez-Lorenzo, C. González-Chomón and A. Concheiro

21.1 Introduction 228
21.2 Molecular Imprinting Technology 229
21.3 Imprinted Hydrogels 235
 21.3.1 Affinity-controlled Release from Bioinspired Networks 235
 21.3.2 Competitive Displacement Release 240
 21.3.3 Hydrolytically Induced Drug Release 242
21.4 Stimuli-responsive Imprinted Networks 243
 21.4.1 Temperature-sensitive Imprinted Hydrogels 245
 21.4.2 pH-sensitive Imprinted Gels 249
 21.4.3 Light-responsive Imprinted Networks 251
21.5 Conclusions and Future Aspects 254
Acknowledgements 254
References 255

Chapter 22 Biomolecule-sensitive Hydrogels 261
Takashi Miyata

22.1 Introduction 261
22.2 Strategies for Designing Biomolecule-sensitive Hydrogels 262
22.3 Glucose-sensitive Hydrogels 264
 22.3.1 Glucose-sensitive Hydrogels Using Enzymatic Reaction 264
 22.3.2 Glucose-sensitive Hydrogels Using Phenylboronic Acid 266
 22.3.3 Glucose-sensitive Hydrogels Using Lectin 266
22.4 Protein-sensitive Hydrogels 270
 22.4.1 Enzyme-sensitive Hydrogels 270
 22.4.2 Antigen-sensitive Hydrogels 272
22.5 Biomolecule-sensitive Hydrogels Prepared by Molecular Imprinting 276
22.6 Biomolecule-sensitive Hydrogel Particles 279
22.7 Other Biomolecule-sensitive Hydrogels 282
22.8 Conclusion 285
References 285
Chapter 23 Intelligent Surfaces for Cell and Tissue Delivery
Hironobu Takahashi and Teruo Okano

23.1 Introduction

23.2 Overview of Polymeric Materials for Cell/Tissue Delivery
23.2.1 Self-regulating Insulin Delivery System as a Substitute for Cell Transplantation
23.2.2 Microencapsulation of Cells with Polymeric Membranes for Cell Delivery
23.2.3 Scaffold-based Cell/Tissue Delivery in Tissue Engineering

23.3 The Intelligence of Thermo-responsive Polymers for Cell/Tissue Delivery
23.3.1 Thermo-responsive Poly(N-isopropylacrylamide)
23.3.2 Thermo-responsive Encapsulation of Cells for Cell Delivery

23.4 Thermo-responsive Surface for Cell Sheet-based Tissue Delivery
23.4.1 Cell Sheet Engineering for Scaffold-free Cell/Tissue Delivery Systems
23.4.2 Thermo-responsive Polymer Grafting on Cell Culture Substrates
23.4.3 Cell Sheet-based Tissue Delivery in Regenerative Medicine
23.4.4 Local Drug Release Technique with Cell Sheet Transplantation
23.4.5 Micro-fabricated Thermo-responsive Surfaces for Delivery of Tissue-mimicking Cell Sheets

23.5 Conclusions

References

Chapter 24 Drug/Medical Device Combination Products with Stimuli-responsive Eluting Surface
C. Alvarez-Lorenzo and A. Concheiro

24.1 Combination Products
24.2 Benefits of Combining Medical Devices and Drugs/Biological Products
24.3 Materials for Medical Devices
24.4 Procedures to Incorporate Drugs
24.4.1 Compounding
24.4.2 Impregnation Using a Swelling Solvent
24.3 Coating 320
24.4 Drug Chemically Bonded to the Surface 320
24.5 Polymer Grafting to the Device Surface 321
24.5 Responsive Surfaces for Drug Loading/Controlled Release 325
24.5.1 Polymers Grafted by Means of Chemical Initiators 325
24.5.2 Polymers and Networks Grafted Applying Radiation 329
24.5.3 Surface Modification Applying Plasma Techniques 339
24.6 Conclusions and Future Aspects 341
Acknowledgements 342
References 342

Subject Index 349