Medicinal Chemistry
The Modern Drug Discovery Process

Erland Stevens
Davidson College, North Carolina
Contents

Acknowledgments xiii

Chapter 1

A Brief History of Drug Discovery 1

1.1 Selected Drugs from Early Recorded History 1
 China 2
 India 2
 Middle East 2
 Greek, Roman, and Byzantine Periods 3

1.2 Middle Ages to Modern Times 3
 Natural Products 4
 Advances in Inorganic Chemistry 5
 Sulfur Drugs 7

1.3 Evolution of the U.S. Food and Drug Administration 8
 Corporate Self-Regulation 8
 Food, Drug, and Cosmetic Act of 1938 9
 Continuing Challenges and Refinements 9

Summary 12 • References 12

Chapter 2

The Modern Drug Discovery Process 13

2.1 Market Analysis 13

Case Study Treatment of Acid Reflux 14

2.2 Target Selection 15
 Finding a Target 15
 Traditional Methods 16

Case Study ACE Inhibitors and A-II Receptor Blockers 16

Case Study HMG-CoA Reductase Inhibitors 18
 Assay Development 20

2.3 Lead Discovery 24

2.4 Lead Optimization 24

2.5 Patent Filing 25

2.6 Animal Trials 25

2.7 Investigational New Drug Application 26

2.8 Phase Trials 26
 Phase I 26
 Phase II 26
 Phase III 27

2.9 New Drug Application 28

2.10 Launch 28
Chapter 3

A Trip through the Body 34

3.1 The Complexity of the Body 34

What Is the Body? 34
Organization of the Body 35
Balance of Life 37

3.2 Absorption: Drug Entry into the Bloodstream 38

Oral 38
Injection 42
Transdermal 44
Other Routes 44
Topical 46

3.3 Distribution: Drug Transport 47

Blood 47
Crossing Membranes 49
Blood–Brain Barrier 55

3.4 Pharmacodynamics: At the Drug Target 55

3.5 Metabolism and Elimination: Drug Removal 56

KIDneys 56
Liver 58
Other Routes 59

Summary 59 • Questions 60 • References 61

Chapter 4

Enzymes as Drug Targets 62

4.1 Introduction to Enzymes 62

Definition 62
Structure 64

Case Study Use of α-Helices to Cross Cell Membranes 67

Types 69

4.2 Mode of Action 70

Theory 70
Regulation 71

4.3 Kinetics 72

Single Substrate 72
Multiple Substrates 78

4.4 Inhibitors 79

Reversible 79
Irreversible 84
Chapter 5

Receptors as Drug Targets

5.1 Receptors 94
- Similarities to Enzymes 94
- Differences from Enzymes 95

5.2 Receptor Classification 95
- Ligand-Gated Ion Channels 96
- G-Protein–Coupled Receptors 97
- Tyrosine Kinase–Linked Receptors 99
- Nuclear Receptors 100

5.3 Types of Ligands 100
- Agonists 101
- Antagonists 104
- Inverse Agonists 106

5.4 Receptor Theories 107
- Occupancy Theory 107
- Allosteric Theory 115
- Rate Theory 116
- Drug-Target Residence Time 117

Summary 119 • **Questions** 119 • **References** 120

Chapter 6

Oligonucleotides as Drug Targets 122

6.1 The Basics of Nucleic Acids 122
- The Building Blocks of Nucleic Acids 122
- DNA 125
- RNA 126

6.2 Common Methods of Oligonucleotide Recognition 130
- Base Pairing 130
- Charge-Charge Interactions 133
- Intercalation 133
- Groove Binding 136

6.3 Interference with Nucleic Acid Synthesis and Function 139
- Anti-HIV Nucleic Acid Analogues 139
- Nucleic Acid Antimetabolites 142
- Tubulin Interactions 144

Summary 145 • **Questions** 145 • **References** 148
Chapter 7

Pharmacokinetics 150

7.1 Intravenous Bolus 150
 \(C_p \) vs. Time and Elimination 150
 Clearance 155
 Volume of Distribution 159
 Serum Binding 165

 Case Study Minimization of Serum Binding 166

7.2 Intravenous Infusion 167
 Infusion Rate Constant 167
 Loading Bolus 169
 Infusion-Like Administration Routes 171

7.3 Oral 172
 Absorption and Elimination Phases 172
 Bioavailability 173
 Absorption Rate Constant 174
 Multiple Oral Doses 176
 Clearance and Volume of Distribution Revisited 178

 Case Study Fast Onset Sertraline Analogues 180

7.4 Drug Metabolites 181

Summary 182 • Questions 182 • References 184

Chapter 8

Metabolism 185

8.1 Introduction 185

8.2 Metabolic Reactions 186
 Phase I Reactions 186
 Phase II Reactions 193

8.3 Metabolism Issues 197
 Metabolite Activity 197

 Case Study Sertraline and Later Generation SSRIs 198

 Case Study Acetaminophen 201

 Case Study MPPP 202
 Inhibition of Metabolism by Drugs 203

 Case Study Cimetidine 204

 Case Study St. John’s Wort 204
 Population Variations 205

 Case Study Theophylline 206

8.4 Prodrugs 208
 Case Study Clopidogrel and Prasugrel 209

Summary 211 • Questions 211 • References 212
Chapter 9
Molecular Structure and Diversity 214
9.1 Determining Target Structure 214
 - Literature 215
 - X-Ray Crystallography 215
 - NMR Spectroscopy 217
 - Molecular Modeling 217
 Case Study Protease Inhibition in Coronaviruses 218
9.2 Complementarity between a Target and Drug 220
 - Intermolecular Forces 220
 - Molecular Shape 225
 Case Study Conformational and Stereochemical Effects on Ligands of Acetylcholine Receptors 225
 - Drug Pharmacophore 228
9.3 Searching for Drugs 228
 - Diversity and Molecular Space 228
 - Privileged Structures 230
9.4 Combinatorial Chemistry 231
 - Parallel Synthesis 232
 - Split Synthesis 237
 - Advantages and Disadvantages 240
Summary 242 • **Questions** 243 • **References** 245

Chapter 10
Lead Discovery 247
10.1 Approaches to Searching for Hits 247
 - Traditional Library Screening 247
 - Fragment-Based Screening 251
 Case Study Inhibition of Stromelysin 252
 Case Study Inhibition of Cyclin-Dependent Kinase 2 254
 Case Study Inhibition of Acetylcholine Esterase 255
 Virtual Screening 257
 Case Study Inhibition of Protein Kinase B 257
 Case Study Inhibition of Sir2 Type 2 258
 Case Study C–C Chemokine Receptor Type 5 Agonists 259
10.2 Filtering Hits to Leads 260
 - Pharmacodynamics and Pharmacokinetics 260
 - Biological Assays 261
 - Lipinski’s Rules and Related Indices 261
 - Final Concerns for Promotion of a Hit to a Lead 263
10.3 Special Cases 264
 - Serendipity 264
 Case Study Penicillin 264
 Case Study Chlordiazepoxide 265
 Clinical Observations 265
 Case Study Viloxazine 266
Chapter 11

Lead Optimization: Traditional Methods 273

11.1 Pharmacophore Determination 273

 Case Study The Pharmacophore of Morphine 274

 Case Study The Pharmacophore of Migrastatin, a Promising Anticancer Compound 274

11.2 Functional Group Replacements 275

11.3 Alkyl Group Manipulation 278

 Chain Homologation 278

 Ring-Chain Interconversion 279

11.4 Isosteres 279

 Case Study Cimetidine 283

11.5 Directed Combinatorial Libraries 287

 Case Study Raf Kinase Inhibitors 288

11.6 Peptidomimetics 288

 Case Study Angiotensin-Converting Enzyme Inhibitors 290

 Case Study Human Immunodeficiency Virus-1 Protease Inhibitors 292

Summary 294 • Questions 294 • References 296

Chapter 12

Lead Optimization: Hansch Analysis 298

12.1 Background 298

12.2 Parameters 299

 Hammett Constants: An Electronic Parameter 300

 Hansch Constants: A Lipophilicity Parameter 302

 Taft Steric Parameter 305

 Other Parameters 306

12.3 Hansch Equations 307

 Case Study Phosphonate Ester Cholinesterase Inhibitors 308

 Case Study Carboxylate Antifungals 310

 Case Study Tumor Cell Resistance Modulators 311

12.4 Craig Plots 313

12.5 Topliss Trees 314

12.6 Evaluating Hansch Analysis 314

12.7 Comparative Molecular Field Analysis 315

 Case Study Comparing Hansch Analysis and CoMFA 316

Summary 317 • Questions 318 • References 319

Chapter 13

Aspects in Pharmaceutical Synthesis 321

13.1 Solids, Solids, Solids 321

 Recrystallization 322

 Acid–Base Salts 323