CURRENT STATE OF ALZHEIMER’S DISEASE RESEARCH AND THERAPEUTICS

Edited by
Elias K. Michaelis and Mary L. Michaelis
Department of Pharmacology, Toxicology and Neuroscience
University of Kansas, Lawrence, KS, USA

Serial Editor
S. J. Enna
Department of Molecular and Integrative Physiology
Department of Pharmacology, Toxicology and Therapeutics,
University of Kansas Medical Center,
Kansas City, Kansas, USA

Managing Editor
Lynn LeCount
University of Kansas Medical Center, School of Medicine,
Kansas City, Kansas, USA

ADVANCES IN
PHARMACOLOGY
VOLUME 64
Hsp90 Modulation for the Treatment of Alzheimer’s Disease 1
Huiping Zhao, Mary L. Michaelis, and Brian S.J. Blagg

Abstract 1
I. Introduction 1
II. Hsp90 Complexes in Alzheimer’s Disease 4
III. Potential Therapeutic Effects of Hsp90 Inhibitors in Alzheimer’s Disease 7
IV. Conclusion 18
References 19

Using Pittsburgh Compound B for In Vivo PET Imaging of Fibrillar Amyloid-Beta 27
Ann D. Cohen, Gil D. Rabinovici, Chester A. Mathis, William J. Jagust, William E. Klunk, and Milos D. Ikonomovic

Abstract 27
I. Introduction 28
II. Rationale for Studying Amyloid Deposition 28
Mitochondrial Abnormalities in Alzheimer’s Disease: Possible Targets for Therapeutic Intervention 83

Diana F. Silva, J. Eva Selfridge, Jianghua Lu, E. Lezi, Sandra M. Cardoso, and Russell H. Swerdlow

Abstract 83
I. Introduction 83
II. Mitochondrial Function in AD 86
III. Mitochondria as a Therapeutic Target in AD 99
IV. Conclusion 107
Acknowledgments 108
Abbreviations 108
References 110

γ-Secretase as a Target for Alzheimer’s Disease 127

Michael S. Wolfe

Abstract 127
I. Introduction 127
II. γ-Secretase in Alzheimer’s Disease 128
III. γ-Secretase in Biology 130
IV. Biochemistry of the γ-Secretase Complex 132
V. Inhibitors 134
VI. Modulators 140
VII. Conclusion 146
Acknowledgment 146
Abbreviations 146
References 147

Altering Mitochondrial Dysfunction as an Approach to Treating Alzheimer's Disease 155
Jerry R. Colca, and Douglas L. Feinstein

Abstract 155
I. Introduction 155
II. Theories of Pathogenesis and the Natural History of Alzheimer’s Disease 156
III. Other Pathologies Can Affect Mitochondrial Function 158
IV. Mitochondrial Function Can Exacerbate Other Pathology 164
V. Therapeutic Approaches Being Taken and Opportunities Suggested 165
VI. Conclusion 168
Abbreviations 170
References 170

scylo-Inositol, Preclinical, and Clinical Data for Alzheimer’s Disease 177
Keran Ma, Lynsie A. M. Thomason and JoAnne McLaurin

Abstract 177
I. Introduction 177
II. Preclinical Development of scylo-Inositol 179
III. Sources of scylo-Inositol 186
IV. Bioavailability and Metabolism 189
V. Human Clinical Trials of scylo-Inositol as an AD Therapeutic 195
VI. Structure–Function Analysis of scylo-Inositol 198
VII. Inositol for the Treatment of Other Disorders 202
VIII. Conclusion 204
Acknowledgments 205
Abbreviations 205
References 206
Beyond Amyloid: The Future of Therapeutics for Alzheimer's Disease 213
Rachel F. Lane, Diana W. Shineman, John W. Steele, Linda (Bobbi) H. Lee, and Howard M. Fillit

Abstract 213
I. Introduction 214
II. Current Therapeutic Targets 217
III. Conclusion 254
 Abbreviations 255
 References 256

Activation of Protein Kinase C Isozymes for the Treatment of Dementias 273
Miao-Kun Sun and Daniel L. Alkon

Abstract 273
I. Introduction 273
II. PKC Signaling System 274
III. Memory and Alzheimer's Dementia 282
IV. Ischemic Dementia 287
V. Conclusion 288
 Abbreviations 290
 References 290

Striatal-Enriched Protein Tyrosine Phosphatase in Alzheimer's Disease 303
Jian Xu, Pradeep Kurup, Angus C. Nairn, and Paul J. Lombroso

Abstract 303
I. Introduction 303
II. Striatal-Enriched Protein Tyrosine Phosphatase (STEP) 305
III. STEP Inhibitors 317
IV. Conclusion 318
 Acknowledgments 318
 Abbreviations 319
 References 319