Caffeine
Chemistry, Analysis, Function
and Effects

Edited by

Victor R Preedy
School of Medicine, King's College London, UK
Email: victor.preedy@kcl.ac.uk

RSC Publishing
Contents

Caffeine in Context

Chapter 1 Caffeine and Nutrition: an Overview

Rubem Carlos Araujo Guedes, Márlison José Lima de Aguiar and Cilene Rejane Ramos Alves-de-Aguiar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction: Caffeine Consumption and its Effects on the Organism</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Pharmacodynamics and Pharmacokinetics of Caffeine</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Caffeine–Nutrition Interaction: Effects on Physiological Processes</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Caffeine–Nutrition Interaction: Latent Inhibition Model of Attention</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Caffeine–Nutrition Interaction on Cortical Spreading Depression</td>
<td>11</td>
</tr>
<tr>
<td>1.6 Concluding Remarks</td>
<td>13</td>
</tr>
<tr>
<td>Summary Points</td>
<td>14</td>
</tr>
<tr>
<td>Key Facts of Latent Inhibition (LI)</td>
<td>15</td>
</tr>
<tr>
<td>Key Facts of Cortical Spreading Depression (CSD)</td>
<td>16</td>
</tr>
<tr>
<td>Definitions and Explanations of Key Terms</td>
<td>16</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>18</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>18</td>
</tr>
</tbody>
</table>

Chapter 2 Caffeine as an Ingredient in Sugar Sweetened Beverages

Lynn J. Riddell, Dhoungsiri Sayompark, Penny Oliver and Russell S. J. Keast

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction: Caffeine Consumption Patterns</td>
<td>22</td>
</tr>
<tr>
<td>2.2 Caffeine in the Body</td>
<td>23</td>
</tr>
</tbody>
</table>
The Chemistry of Caffeine

Chapter 3 The Chemistry of Caffeine
Jose Joao Carvalho, Franziska Emmerling and Rudolf J. Schneider

In Lieu of an Introduction: Caffeine Trivia
3.1 Nomenclature and Generic Properties 43
3.2 Physicochemical Properties 44
3.3 Spectral Data 47
3.4 Technical Substance, Identification and Impurities 47
3.5 Crystal Structure 48
3.6 Hazard Classification 49
Summary Points 50
List of Abbreviations 50
References 50

Chapter 4 Chemistry and Crystal Structures of Complexes of Caffeine and Tea Catechins
Takashi Ishizu and Hiroyuki Tsutsumi
4.1 Introduction 53
4.2 Stereochemical Structures of Complexes of Caffeine and Catechins 55
Chapter 5 Synthesis of Labeled Caffeine
Frédéric Balssa

5.1 Introduction

5.2 Strategies for Caffeine Labeling
 5.2.1 Synthesis of Labeled Caffeine by Hydrogen Exchange
 5.2.2 Synthesis of Labeled Caffeine through Total Synthesis
 5.2.3 Synthesis of Labeled Caffeine by Partial Synthesis with a Xanthine Derivative

5.3 Syntheses of Labeled Caffeine
 5.3.1 Synthesis of 15N$_2$ Caffeine
 5.3.2 Syntheses of 11C Caffeine
 5.3.3 Syntheses of 13C Caffeine
 5.3.4 Syntheses of 14C Caffeine
 5.3.5 Syntheses of 2H Caffeine
 5.3.6 Syntheses of 3H Caffeine

5.4 Characterization of Labeled Caffeine
 5.4.1 Characterization by Nuclear Magnetic Resonance
 5.4.2 Characterization by Mass Spectrometry

Summary Points

Key Facts of Labeled Caffeine

Definitions of Words and Terms

Abbreviations

References
Chapter 6 Diffusion of Caffeine in Different Aqueous Media at Physiological Temperature

Ana C. F. Ribeiro, Victor M. M. Lobo, Cecília I. A. V. Santos and Miguel A. Esteso

6.1 Introduction 89
6.2 Theoretical Aspects 90
 6.2.1 Concepts of Diffusion 90
 6.2.2 Taylor Dispersion Technique 92
6.3 Experimental Aspects 93
 6.3.1 Diffusion of Aqueous Caffeine 93
 6.3.2 Diffusion of Caffeine in the Presence of β-CD 93
 6.3.3 Diffusion of Caffeine in the Presence of HP-β-CD 95
6.4 Conclusions 95
Summary Points 96
Key Facts of the Cyclodextrins 97
Key Facts of the Diffusion 97
Definitions of Words and Terms 97
Abbreviations 98
Acknowledgements 98
References 98

Analysis

Chapter 7 Analysis of Caffeine by Liquid Chromatography-Mass Spectrometry

Daniel Perrone and Adriana Farah

7.1 Introduction 103
 7.1.1 Caffeine Sources 104
 7.1.2 Pharmacokinetics and Physiological Effects of Caffeine 105
7.2 Analysis of caffeine and related compounds by LC-MS 106
 7.2.1 Food 107
 7.2.2 Water 112
 7.2.3 Biological Matrices 114
7.3 Concluding remarks 121
Summary Points 121
Key Terms of Caffeine Analysis 122
Key Facts of Caffeine Analysis 122
List of Abbreviations 123
References 124
Chapter 8 Simultaneous Determination of Caffeine and Phenolic Compounds in Tea and Coffee
Carolyne B. Faria, Juliana M. Prado, Mauricio A. Rostagno, Flavio L. Schmidt, M. Angela A. Meireles

8.1 Introduction
8.2 Determination of Alkaloids and Polyphenols in Tea and Coffee
8.3 Sample Preparation
8.4 Analysis of Alkaloids and Polyphenols in Tea and Coffee Samples
8.5 Conclusions
Summary Points
Key Facts of the Chemical Composition of Tea and Coffee
Key Facts of Phenolic Compounds
Key Facts of Determination of Caffeine and Phenolic Compounds in Tea and Coffee
Definition of Words and Terms
List of Abbreviations
References

Chapter 9 Analysis of Caffeine in Dietary Products by Multiple Injection Capillary Electrophoresis
Ahmad Amini

9.1 Introduction
9.2 Methodological Considerations
9.3 Separation of Caffeine and Acetaminophen by Capillary Electrophoresis
9.4 Conversion of the Single Injection Method to Multiple Injection Mode
9.5 Method Validation
9.5.1 Specificity and Selectivity
9.5.2 Linearity
9.5.3 Precision
9.5.4 Accuracy
9.5.5 Robustness
9.6 System Suitability and Acceptance Criteria
9.7 Determination of Caffeine in Dietary Products
9.8 Conclusions
Summary Points
Key Facts
Key Terms
List of Abbreviations
References
Chapter 10 Determination of Caffeine in Various Coffee Types by Capillary Electrophoresis Through the Anionic Complex with 3,4-Dimethoxycinnamate 179

Thiago Nogueira and Claudimir Lucio do Lago

10.1 Introduction 179
10.2 Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity DETECTION 181
10.3 The Formation of π-Complexes of Caffeine and Chlorogenic Acids and Analogues 184
10.4 The Ionic π-Complex with Cinnamic Acid Derivatives as A Mobile Version of Caffeine and the Resulting Electrophoretic Method 184
10.5 Validation of the Method 186
10.6 Decaffeinated Coffee and the Need For a Better Limit of Detection 188
10.7 Conclusion 189
Summary Points 189
Key Facts 190
Definition of Words and Terms 190
List of Abbreviations 191
References 191

Chapter 11 Analysis of Caffeine and Related Compounds by Automated Flow Methods 193

Paraskevas D. Tzanavaras and Constantinos K. Zacharis

11.1 Introduction 193
11.2 Automated Flow Injection Techniques 194
11.2.1 Flow Injection Analysis 195
11.2.2 Sequential Injection Analysis 196
11.2.3 Multicommutation-based Flow Injection Techniques 197
11.3 Determination of Caffeine and Related Compounds by Coupling of SI/FI to Separation Techniques 198
11.4 Determination of Caffeine and Related Compounds by Flow Optosensors 201
11.5 Determination of Caffeine and Related Compounds by On-line IR Detection 202
11.6 Various Flow Injection Methods for the Determination of Caffeine and Related Compounds 204
11.6.1 Determination of Caffeine by FI Coupled to Amperometric Detection 204
11.6.2 On-line Extraction of Caffeine from Solid and Slurry Samples 204
Chapter 12 Analysis of Caffeine by Immunoassay

Jose João Carvalho and Rudolf J. Schneider

12.1 Development of Immunoassays for Caffeine
12.2 Enzyme Immunoassay for Caffeine
 12.2.1 How It Works
 12.2.2 A Detailed Experimental Protocol
 12.2.3 Quantifying Caffeine in Beverages, Tablets and Shampoo
 12.2.4 Immunoassay Cross-Reactivity – Selectivity Towards Caffeine
 12.2.5 Comparing the Results with an LC-MS-MS Method
12.3 Final Considerations

Chapter 13 Quantification of Self-Reported Caffeine Use

Merideth Addicott

13.1 Introduction
13.2 Estimation of Dietary Caffeine Consumption
 13.2.1 Self-report Methods
13.3 Standardized Caffeine Content
 13.3.1 Beverage Sampling
 13.3.2 Controlled-dose Studies
13.4 Self-reported Caffeine Use Validation with Physiological Caffeine Concentrations
13.5 Conclusion

Summary Points
Key Facts about Methylxanthines in Coffee, Tea, and Cocoa
Definition of Words and Terms
List of Abbreviations
References
Function and Effects

Chapter 14 Caffeine and the Brain: An Overview
Elio Acquas, Maria Antonietta De Luca, Sandro Fenu, Rosanna Longoni and Liliana Spina

14.1 Introduction
14.2 Pharmacokinetic and Pharmacodynamic of Caffeine
14.3 Effects of Caffeine on in vivo Neurotransmitters Release
14.4 Effects of Caffeine on Mechanisms of Synaptic Plasticity
14.5 Caffeine in Neurodegenerative Diseases: Parkinson’s and Alzheimer’s

Key Facts
Summary Points
Definitions of Words and Terms
List of Abbreviations
References

Chapter 15 Caffeine and Cognitive Performance
Ana Adan and Josep Maria Serra-Grabulosa

15.1 Introduction
15.2 The Difficulty of Assessing Cognitive Performance
15.3 Effects of Caffeine on Attention and Psychomotor Tasks
15.4 Effects of Caffeine on Memory and Executive Function Tasks
15.5 Effects of Caffeine in Subjective Activation and Affect
15.6 Caffeine Combined With Other Substances
15.7 Caffeine Use in Children and Aged Subjects
15.8 Methodological Difficulties to Solve in the Future

Summary Points
Key Facts
Definitions of Words and Terms
List of Abbreviations
References

Chapter 16 Neuroprotective Effects of Caffeine in Sleep Deprivation
Karim A. Alkadhi, Munder A. Zagaar, Ibrahim A. Alhaider and Karem H. Alzoubi

16.1 Introduction
16.2 Sleep and Sleep Cycle
16.2.1 Neurochemistry During Sleep 289
16.2.2 Sleep Architecture 290
16.3 Nutrition, Metabolism and Sleep 290
16.4 Sleep deprivation 292
16.4.1 Sleep Disruption and Neural Function 293
16.5 Caffeine and Adenosine 295
16.5.1 Adenosine Pharmacology 296
16.5.2 Caffeine Pharmacology 296
16.5.3 Caffeine and Cognitive Function 297
16.5.4 Caffeine, Sleep Deprivation and LTP Impairment 298
16.6 Caffeine and Neuroprotection 299
16.7 Effects of Caffeine on Sleep-Related Neural Signaling Pathways 301
Summary Points 304
Definitions of Words and Terms 305
List of Abbreviations 306
References 307

Chapter 17 Caffeine and Exercise Performance 314
Todd A. Astorino and Ailish C. White

17.1 Introduction 314
17.2 Mechanisms Explaining Ergogenic Effect of Caffeine 315
17.3 Recommended Dosing, Timing and Form of Caffeine Ingestion 317
17.4 Tolerance and Withdrawal of Caffeine 318
17.5 Effects of Caffeine on Exercise Performance 318
17.5.1 Caffeine and Endurance Exercise 318
17.5.2 Caffeine and High-Intensity Exercise 319
17.5.3 Caffeine and Resistance Training 319
17.5.4 Caffeine and Team Sport Performance 325
17.5.5 Caffeine and Sprint Performance 325
Summary Points 325
Key Facts of Caffeine’s Role as an Ergogenic Aid 326
Definitions of Words and Terms 327
List of Abbreviations 327
References 328

Chapter 18 The Effects of Caffeine on Ventilation and Pulmonary Function During Exercise 337
Robert F. Chapman, Daniel P. Wilhite and Timothy D. Mickleborough

18.1 Introduction 337
18.2 Effects of Caffeine on Ventilatory Drive 338
18.2.1 Central and Periphery Chemosensitivity Changes with Caffeine 338
18.2.2 Caffeine and Ventilation During Exercise 339
18.3 Potential Ergogenic Effects of Increased Exercise Ventilation 342
18.4 Potential Negative Consequences of Increased Ventilation During Exercise 343
18.5 Effects of Caffeine on Pulmonary Function 345
18.6 Summary 347
Summary Points 347
Key Facts of Ventilatory Control During Exercise 348
Definition of Words and Terms 349
List of Abbreviations 349
References 350

Chapter 19 Dietary Caffeine and Young Children: Implications for Health 353
William J. Warzak, Shelby Evans, Luis F. Morales Knight, Laura Needelman and Rebecca K. Dogan

19.1 The Prevalence of Caffeine 353
19.2 Trends in Caffeine Consumption 354
19.3 The Effects of Caffeine on Children 355
19.4 CNS Effects 355
19.5 Sleep Effects 356
19.6 Diuretic Effects 357
19.7 Maternal Consumption 357
19.8 Recommended Intake 358
19.9 Future Research 359
Summary Points 361
Key Facts of Caffeine 362
Definitions of Words and Terms 363
List of Abbreviations 365
References 365

Chapter 20 Caffeine and Type 2 Diabetes 369
Atsushi Goto and Simin Liu

20.1 Introduction 369
20.2 Type 2 Diabetes: Pathophysiology and Risk Factors 369
20.3 Coffee Intake and Type 2 Diabetes 370
20.3.1 Epidemiologic Evidence 370
20.3.2 Potential Mechanisms 370
20.4 Caffeine Intake and Type 2 Diabetes Risk 371
20.4.1 Epidemiologic Evidence 371
20.4.2 Experimental Evidence 372
Chapter 21 Caffeine and Apoptosis

Weinong Han, Yu-Ying He

21.1 Introduction 382
21.2 Caffeine and p53 383
21.3 Caffeine and ATR–Chk1 385
21.4 Caffeine and AKT–COX-2 387
21.5 Conclusion and Perspective 388
Summary Points 388
Key Facts of AKT 389
Key Facts of ATR 389
Key Facts of ATM 390
Key Facts of Apoptosis 390
Key Facts of UV 391
Key Facts of PTEN 392
Definitions of Words and Terms 392
List of Abbreviations 395
Acknowledgement 396
References 396

Subject Index 400