Designing Multi-Target Drugs

Edited by

J. Richard Morphy
Stirling, UK*

C. John Harris
Eynsford, Kent, UK

*CURRENT address: Lilly Research Centre, Windlesham Research Centre, Surrey GU20 9PH, UK.
Contents

Chapter 1 Simple Drugs Do Not Cure Complex Diseases: The Need for Multi-Targeted Drugs
Jorrit J. Hornberg

1.1 Introduction 1
1.2 The Need for Better and Safer Drugs 2
1.3 Cancer 2
1.4 Rheumatoid Arthritis 4
1.5 Control of Complex Biological Systems 5
1.6 Safety of Multi-Targeted Drugs 6
  1.6.1 Target-Related Toxicity 6
  1.6.2 Off-Target Toxicity 7
  1.6.3 Chemistry-Related Toxicity 8
1.7 Concluding Remarks 8
Acknowledgements 9
References 9

Chapter 2 Clinical Need and Rationale for Multi-Target Drugs in Psychiatry
Mohammed Shahid

2.1 Introduction 14
2.2 Clinical Need 16
2.3 Rationale For Multi-Target Agents: Multifunctional Pharmacology and Multi-Therapeutic Application 19
2.4 New Introductions 21
  2.4.1 Agomelatine 22
  2.4.2 Vilazodone 22
  2.4.3 Asenapine 22
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.4 Lurasidone</td>
<td>24</td>
</tr>
<tr>
<td>2.4.5 Iloperidone</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Emerging Promising Compounds in Development</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1 Cariprazine</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2 Lu AA21004 and Zicronapine</td>
<td>25</td>
</tr>
<tr>
<td>2.5.3 LY2140023</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Summary and Future Perspectives</td>
<td>27</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
</tbody>
</table>

### Chapter 3 Drug Molecules and Biology: Network and Systems Aspects

*Malcolm P. Young, Steven Zimmer and Alan V. Whitmore*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Biological Robustness and Therapeutic Discovery</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Biological Networks and Their Properties</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Multiple Interventions: Expect the Unexpected</td>
<td>36</td>
</tr>
<tr>
<td>3.4 Effective Drugs and Multiple Interventions in Networks</td>
<td>37</td>
</tr>
<tr>
<td>3.5 Drug Discovery Problems in Light of Network Science</td>
<td>39</td>
</tr>
<tr>
<td>3.6 Network Pharmacology: Exploiting Advances in Chemical Biology and Network Science</td>
<td>41</td>
</tr>
<tr>
<td>3.7 Prospects for Multi-Target Drug Discovery in Light of Network Science</td>
<td>46</td>
</tr>
<tr>
<td>Glossary</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>48</td>
</tr>
</tbody>
</table>

### Chapter 4 Chemoinformatic Approaches to Target Identification

*Elisabet Gregori-Puigjané and Michael J. Keiser*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>50</td>
</tr>
<tr>
<td>4.2 Approaches</td>
<td>51</td>
</tr>
<tr>
<td>4.2.1 Representing Ligands for Similarity Calculations</td>
<td>51</td>
</tr>
<tr>
<td>4.2.2 Organizing Biological Targets by their Ligands</td>
<td>52</td>
</tr>
<tr>
<td>4.2.3 Profiling</td>
<td>55</td>
</tr>
<tr>
<td>4.3 Applications</td>
<td>58</td>
</tr>
<tr>
<td>4.3.1 Target Identification</td>
<td>59</td>
</tr>
<tr>
<td>4.3.2 Safety and Target-Specific Toxicity</td>
<td>60</td>
</tr>
<tr>
<td>4.3.3 Applicability</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>62</td>
</tr>
</tbody>
</table>
Chapter 5 Designing Multi-Target Drugs: *In Vitro* Panel Screening –
Biological Fingerprinting
Jonathon S. Mason

5.1 Introduction: Biological Fingerprints – A Biological View of Compounds 66
5.2 The Cerep Bioprint™ Database 68
5.3 Profiling Concepts and Practice 71
5.4 Profiling of Drugs: The Multi-Target/
Polypharmacology of Drugs 72
5.5 Profiling of Project Compounds 73
  5.5.1 Choosing the Best Hit or Lead Compound and Differentiation 74
  5.5.2 Profiling of Tool Compounds: Target Validation 77
  5.5.3 Selectivity and the Use of the Broad *In Vitro*
  Biological Profile to Predict *In Vivo* Effects and Safety Issues 78
  5.5.4 Multi-Target/Polypharmacology of Attrited Compounds 79
5.6 Profiling and Clustering of Compounds: *In Silico*
  Descriptors and Similarity Issues 80
5.7 *In Vitro* Panel Screening: The Future 82
References 82

Chapter 6 Phenotypic and *In Vivo* Screening: Lead Discovery and Drug Repurposing
Christopher A. Lipinski

6.1 Changes in Screening Philosophy 86
6.2 Phenotypic Screening: Advantages, Disadvantages,
Ligand Matching and MTDD 88
6.3 Drug Repurposing: Leveraging Signaling
  Network Activities 90
References 92

Chapter 7 Target/s Identification Approaches – Experimental
Biological Approaches
Giulio Superti-Furga, Kilian Huber and Georg Winter

7.1 Introduction 94
7.2 Yeast Genomic Assays 95
  7.2.1 Drug-Induced Haplo-Insufficiency Profiling (HIP) 95
  7.2.2 Homozygous Profiling (HOP)/Haploid Deletion
  Chemical Genetic Profiling 97
7.3 Genomic Assays in Mammalian Cells
7.3.1 Comparative Gene Expression Profiling 97
7.3.2 RNA Interference-Based Screens 98
7.4 Proteomic Approaches
7.4.1 Compound-Centred Chemical Proteomics (CCCP) 98
7.4.2 Kinobeads 100
7.4.3 Activity-Based Protein Profiling (ABPP) 102
7.4.4 Global Phosphoproteomics 102
7.4.5 Lysine Acetylation Profiling 104
7.4.6 Drug Affinity Responsive Target Stability (DARTS) 104
7.5 Other Methods 104
7.5.1 Yeast Three-Hybrid (Y3H) 104
7.5.2 Protein Microarrays 105
7.6 Conclusions 107
References 107

Chapter 8 Historical Strategies for Lead Generation
J. Richard Morphy

8.1 Introduction 111
8.2 Historical Approaches 112
8.2.1 Framework Combination 112
8.2.2 Screening 115
8.2.3 Comparing Lead Generation Approaches 117
8.3 Emerging Approaches 118
8.3.1 Fragment Approach 118
8.3.2 Virtual Screening 119
8.3.3 Structure Guided Approaches 120
8.3.4 Natural Products 121
8.4 Chemical Biology 121
8.5 Factors Influencing the Feasibility of MTDD 122
8.6 Summary 126
References 126

Chapter 9 In Silico Lead Generation Approaches in Multi-Target Drug Discovery
Xiaohou Ma and Yuzong Chen

9.1 Introduction to In Silico Screening Methods 130
9.1.1 Molecular Docking 130
9.1.2 Pharmacophores 131
9.1.3 QSAR 132
9.1.4 Machine Learning Methods 132
### Chapter 10 The Challenges of Multi-Target Lead Optimization

*J. Richard Morphy*

10.1 Introduction 141
10.2 Optimization of the Activity Profile 142
10.3 Wider Selectivity 146
10.4 Physicochemical Properties 149
10.5 Summary 153

### Chapter 11 Combination Agents Versus Multi-Targeted Agents – Pros and Cons

*Jose G. Monzon and Janet Dancey*

11.1 Introduction 155
11.2 Principles of Combination Chemotherapy for the Treatment of Cancer 157
11.2.1 Principle #1: All Drugs Must be Active as Single Agents 158
11.2.2 Principle #2: Drugs Should be Chosen for Non-Overlapping Toxicity 159
11.2.3 Principle #3: Drugs Should be Chosen for Different Synergistic Mechanisms of Action 160
11.2.4 Principle #4: Drugs Should be Chosen That Have Different Mechanisms or Patterns of Resistance 160
11.2.5 Principle #5: Drugs Should be Administered at the Optimum Dose and Schedule 162
11.3 Comparison of Combinations of Single Target Drugs Versus Multi-Targeted Agents – The Pros and Cons of Each Approach 163
11.4 Defining which Targeted Agents to Combine 165
11.5 Preclinical Evaluation of Combinations 169
11.5.1 Factors that Limit the Applicability of *In Vitro* Studies 170
11.5.2 Factors that Limit the Applicability of *In Vivo* Studies 171
11.6 Challenges in the Clinical Development of Drug Combinations 172
11.7 Future Directions 174
References 175

Chapter 12 The Discovery of Lapatinib
Karen E. Lackey 181

12.1 Introduction to Inhibition of Kinases for Cancer Therapeutics 181
12.2 Developing a Lead Series for Dual Kinase Inhibition 183
12.3 Performing Multi-Dimensional Data Analysis for Achieving the Target Profile 186
12.4 Optimizing Drug Properties whilst Retaining the Target Profile 189
12.4.1 Pyridopyrimidines 189
12.4.2 6-Ether Linked 4-Anilinoquinazolines 191
12.4.3 6-Heteroaryl Linked 4-Anilinoquinazolines 192
12.4.4 Alkynylpyrimidine Series 197
12.5 Understanding the Mode of Inhibition That Makes Lapatinib Analogs Effective 199
12.6 Conclusion 200
Acknowledgements 203
References 204

Chapter 13 Identification and Optimization of Dual PI3K/mTOR Inhibitors
Andreas Karlsson and Carlos García-Echeverría 206

13.1 Introduction 206
13.2 Pyridofuropyrimidine Derivatives: From a Chemical Tool to a Development Candidate 208
13.3 Imidazoquinoline: NVP-BEZ235, the First Dual PI3K/mTOR Inhibitor to Enter Clinical Trials 211
13.4 Quinoline Derivatives: GSK1059615 and GSK2126458 215
13.5 Outlook 216
Acknowledgements 217
References 217

Chapter 14 Discovery of HDAC-Inhibiting Multi-Target Inhibitors
Xiong Cai and Changgeng Qian 221

14.1 Introduction 221
14.2 CUDC-101: a Potent Multi-Target EGFR, HER2, and HDAC Inhibitor 222
14.2.1 Compound Design and Synthesis 222
14.2.2 In Vitro Potency and Mechanism of Action 224
Chapter 15 Targeting Protein-Protein Interactions: Dual Inhibitors of Bcl-2 and Bcl-xL

Michael D. Wendt

15.1 Introduction 243
15.2 Rationale 244
15.3 Discovery Program
  15.3.1 Screening and Hit to Lead 245
  15.3.2 Bcl-xL-Selective Compounds 248
  15.3.3 Dual Inhibitors of Bcl-xL and Bcl-2 250
  15.3.4 Orally Bioavailable Compounds and ABT-263 254
15.4 Conclusion 258
Acknowledgements 259
References 259

Chapter 16 Discovery of the Anti-Psychotic Drug, Ziprasidone

John A. Lowe, III

16.1 Introduction: Multi-Target Drug Design by Serendipity 263
16.2 Initial Efforts Towards an Atypical Antipsychotic Drug 264
16.3 A New Direction and the Discovery of Ziprasidone 266
References 268

Chapter 17 The Rational Design of Triple Reuptake Inhibitors for the Treatment of Depression

Robert J. Weikert

17.1 Introduction 270
17.2 Role of Dopamine in Depression 272
17.3 Challenges Associated with Increased Dopamine Function 273
17.4 Compound Target Profiles 274
17.5 Genesis of the TRI Series 275
Chapter 18 Discovery of Multi-Target Agents for Neurological Diseases via Ligand Design

Maria Laura Bolognesi, Carlo Melchiorre, Cornelis J. Van der Schyf and Moussa Youdim

18.1 The Rationale for Multi-Target Ligands in Alzheimer’s and Parkinson’s Diseases 290
18.2 Discovery of Memoquin, a Multi-Target Lead Candidate for AD
  18.2.1 The Polyamine Scaffold: A Universal Template for Designing Multi-Target Ligands 292
  18.2.2 Memoquin’s In Vitro and In Vivo Profile 293
18.3 Alkylxanthines as Dual-Target-Directed Drug Candidates for PD
  18.3.1 Coffee, Caffeine, Adenosine Receptors, and Monoamine Oxidase: The PD Connection 298
  18.3.2 Trans-8-Styryl and (E,E)-8-(4-Phenylbutadien-1-yl) Alkylxanthines 300
18.4 Discovery of Ladostigil, a Multi-Target Drug Candidate for AD and PD
  18.4.1 Ladostigil, an MTDL by Design 303
  18.4.2 Basic Characteristics and Neuropharmacology of Ladostigil 305
18.5 Conclusions 308
Acknowledgements 309
References 309

Chapter 19 Designing Drugs with Dual Activity: Novel Dual Angiotensin II and Endothelin Receptor Antagonists

Natesan Murugesan

19.1 Introduction 316
19.2 Angiotensin II Receptor Antagonists 317
19.3 The ET System 318
  19.3.1 Endothelin Receptors 319
  19.3.2 Endothelin Receptor Antagonists 319
19.4 Dual Angiotensin II and Endothelin Receptor Antagonists 320
  19.4.1 Scientific Rationale 320
  19.4.2 Rationale of DARA Drug Design 321
19.5 In Vivo Activity of DARA 328
19.6 Clinical Studies of DARA 330
19.7 Summary 331
Acknowledgements 331
References 331

Chapter 20 Ethyl Urea Inhibitors of the Bacterial Type II Topoisomerases DNA Gyrase (GyrB) and Topoisomerase IV (ParE) 335
Stephen P. East, Lloyd G. Czaplewski and David J. Haydon

20.1 Introduction 335
20.2 Function of Bacterial Type II Topoisomerases 337
20.3 Structural Features of Protein Complexes of GyrB and ParE 338
20.4 Ethyl Urea Inhibitors of GyrB and ParE 341
  20.4.1 Benzimidazoles 341
  20.4.2 Triazolopyridines 344
  20.4.3 Imidazopyridines 345
  20.4.4 Benzothiazoles/Thiazolopyridines 346
  20.4.5 Imidazopyridazines 348
  20.4.6 Pyridines 348
20.5 Summary and Outlook 349
References 351

Epilogue 353

Subject Index 356