New Horizons in Predictive Toxicology
Current Status and Application

Edited by

Alan G. E. Wilson
Lexicon Pharmaceuticals Inc., The Woodlands, Texas, USA

RSC Publishing
Contents

Acknowledgements

Chapter 1 Introduction and Overview

Alan G. E. Wilson

1.1 Introduction
1.2 The Growing Need for Improvement in Toxicity Prediction
 1.2.1 Global Regulatory Initiatives
 1.2.2 Industrial Initiatives
 1.2.3 Paradigm Shift in Toxicity Testing
1.3 Technologies for Toxicity Prediction
 1.3.1 Computational Modeling Approaches
 1.3.2 In Vitro Approaches
 1.3.3 "-omics" Technologies
 1.3.4 In Vivo Animal Models
 1.3.5 Integrative Approaches
1.4 Future Perspective
References

Chapter 2 In Silico Tools for Toxicity Prediction

Mark T. D. Cronin

2.1 Introduction
2.2 Structure–Activity Relationships (SARs) and Structural Alerts
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 In Silico Tools for SARs and Structural Alerts to Predict Toxicity</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1.1 DEREK Nexus</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1.2 Other Knowledge-Based Expert Systems</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2 SARs and Knowledge-Based Expert Systems—Conclusions</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Category Formation and Read-Across</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 In Silico Tools for Category Formation and Read-Across</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1.1 OECD QSAR Toolbox</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1.2 Other In Silico Tools for Category Formation and Read-Across</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2 In Silico Tools for Category Formation and Read-Across—Conclusions</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Quantitative Structure–Activity Relationships (QSARs)</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Tools for Compiling QSARs</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1.1 JRC QSAR Model Database</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1.2 Bio-Loom</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1.3 The QSAR DataBank (QDB)</td>
<td>17</td>
</tr>
<tr>
<td>2.4.1.4 Other Databases of QSAR Models</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2 Tools for Compiling QSARs—Conclusions</td>
<td>18</td>
</tr>
<tr>
<td>2.5 QSAR-Derived and Related Expert Systems for Toxicity Prediction</td>
<td>18</td>
</tr>
<tr>
<td>2.5.1 QSAR-Derived and Related Expert Systems for Toxicity Prediction—In Silico Tools</td>
<td>19</td>
</tr>
<tr>
<td>2.5.1.1 Caesar</td>
<td>19</td>
</tr>
<tr>
<td>2.5.1.2 ADMET Predictor™</td>
<td>19</td>
</tr>
<tr>
<td>2.5.1.3 ACD/ToxSuite</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1.4 Other QSAR-Derived and Related Expert Systems for Toxicity Prediction</td>
<td>20</td>
</tr>
<tr>
<td>2.5.2 QSAR-Derived and Related Expert Systems for Toxicity Prediction—Conclusions</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Workflows to Develop and Use QSARs</td>
<td>21</td>
</tr>
<tr>
<td>2.6.1 Workflow Tools to Develop and Use QSARs</td>
<td>22</td>
</tr>
<tr>
<td>2.6.1.1 KNIME</td>
<td>22</td>
</tr>
<tr>
<td>2.6.1.2 Pipeline Pilot</td>
<td>22</td>
</tr>
<tr>
<td>2.6.2 Workflows to Develop and Use QSARs—Conclusions</td>
<td>23</td>
</tr>
<tr>
<td>2.7 Conclusions</td>
<td>23</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>24</td>
</tr>
<tr>
<td>References</td>
<td>24</td>
</tr>
</tbody>
</table>
Chapter 3

Development of an Evaluation Support System for Estimating Repeated-Dose Toxicity of Chemicals Based on Chemical Structure

Makoto Hayashi and Yuki Sakuratani

3.1 Introduction

3.2 Overview of the Hazard Evaluation Support System Integrated Platform (HESS)

3.2.1 Repeated-Dose Toxicity Test Report Database

3.2.2 Toxicity Mechanism Database

3.2.3 Rat Metabolism Map Database with Metabolic Simulator

3.2.4 Human/Rat ADME Database (P450 Metabolism Prediction Model)

3.2.5 Bayesian Net RDT Prediction Model

3.2.6 Category Approach Support Function

3.3 Example of the Category Approach for Evaluating Repeated-Dose Toxicity Tests

3.4 Conclusions

Acknowledgements

References

Chapter 4

Towards a Common Regulatory Framework for Computational Toxicology: Current Status and Future Perspectives

Andrew P. Worth and Aleksandra Mostrag-Szlichtyng

4.1 Introduction

4.2 Conceptual Basis of (Q)SAR Models

4.3 Chemical Grouping and Read-Across

4.4 The Adequacy of (Q)SARs

4.4.1 Demonstrating Validity

4.4.2 Model Overfitting—Causes, Consequences and Diagnostics

4.4.2.1 Regression Models

4.4.2.2 Classification Models

4.4.3 Demonstrating Applicability

4.4.4 Demonstrating Adequacy

4.5 Proposed Checklist for Assessing the Adequacy of (Q)SARs in Risk Assessment

4.6 Application of the Checklist to Selected Software Models for Genotoxicity Prediction
Chapter 5 Information, Informatics and Modeling in Predictive Toxicology
Scott Boyer, Daniel Muthas and Nigel Greene

5.1 Introduction
5.2 Sources of Toxicology Data
5.2.1 Public Sources of Toxicology Data
5.2.2 Proprietary Sources of Toxicology Data
5.2.2.1 Chemical Structure–Activity Data
5.2.2.2 General Toxicology Findings Searchable by Chemical Structure
5.2.2.3 Chemical Structure–Pharmacological Data
5.2.2.4 Toxicologically Relevant ‘Systems Biology’ Sources
5.2.2.5 General Data Sources
5.2.3 Data from the Pharmaceutical Industry
5.2.4 Limitations of Data Sources as Predictive Tools
5.3 Use of Toxicology Data for Prediction
5.3.1 Capturing Structure–Activity Relationships in Toxicology Data
5.3.2 Use of Biological Fingerprints in Assessing Toxicity
5.3.2.1 What is a Biospectrum?
5.3.2.2 Early Efforts
5.3.2.3 Bioprint
5.3.3 Predicting Pharmacology
5.4 Applications of Data-Driven Toxicity Assessments
5.4.1 Drivers for Higher Throughput Methods for Toxicity Assessments
5.4.2 Applications in Drug Discovery and Development
Chapter 6 Cellular Stress and In Vitro Predictive Toxicology
Xuemei Liu, Jeffrey A. Kramer and Alan G. E. Wilson

6.1 Introduction 101
6.2 ER Stress and Heat-Shock Response 102
6.3 Oxidative Stress and Mitochondrial Toxicity 104
6.4 Apoptosis and Cell Cycle 105
6.5 DNA Damage and Repair 107
6.6 Nuclear Receptors 108
6.7 Metabolite-Mediated Toxicity 110
6.8 hERG (Human Ether-a-go-go Related Gene) Channel Interaction 111
6.9 Conclusions 112
References 113

Chapter 7 In Vitro Genotoxicity
John J. Nicolette, Sundar Venkatachalam, Brinda Mahadevan and Patricia A. Escobar

7.1 Introduction 120
7.2 Standard In Vitro Assays for Genotoxicity 122
 7.2.1 Ames Test 122
 7.2.2 Mouse Lymphoma Test 124
 7.2.3 In Vitro Chromosome Aberration Test 124
 7.2.4 In Vitro Micronucleus Assay 125
7.3 Improving Throughput of Genetic Toxicity Tests 126
 7.3.1 Modifications of Standard Mutation Assays 126
 7.3.2 Cytogenetics Tests 128
 7.3.3 Chromosome Aberration: RadarScreen 128
 7.3.4 GreenScreen HC Assay 129
 7.3.5 Vitotox Assay 129
7.4 Other Approaches for In Vitro Genotoxicity Testing 130
 7.4.1 Assays to Detect Mutations 131
 7.4.1.1 HGPRT Assays 131
 7.4.1.2 Yeast DEL Assay 131
7.4.2 Assays to Detect Aneuploidy
 7.4.2.1 Anti-Kinetochore Staining/Fluorescent In Situ Hybridization 132
 7.4.2.2 Mnvit—Flow Cytometer (MN/High-Content Screening) 133

7.4.3 Indicators of DNA Damage
 7.4.3.1 DNA Adducts 134
 7.4.3.2 8-OH-DG Measurements 134
 7.4.3.3 Comet Assay 134
 7.4.3.4 H2AX 135

7.4.4 DNA Repair 136

7.5 Future Areas for Consideration
 7.5.1 Toxicogenomics 136
 7.5.2 Epigenetics 138
 7.5.3 High-Throughput Screening (HTS)—Tox21 Community 139

7.6 Conclusions 140
Acknowledgements 141
References 141

Chapter 8 Cardiac Toxicity Prediction: To Simplify, or to Integrate, that is the Question 147
Vivek J. Kadambi, Colleen Synan and Katherine Brewer

8.1 Introduction 147
8.2 Ion Channel Binding Assays 148
8.3 Patch Clamp Assay 151
8.4 Ex Vivo Preparation Assays 152
8.5 Langendorff Preparation 153
8.6 Isolated Cardiomyocyte Assays 154
8.7 Conclusions 155
Acknowledgements 155
References 155

Chapter 9 In Vitro Approaches for Determining Liver-Specific Toxicity of New Drug Candidates 157
James M. McKim Jr

9.1 Introduction 157
9.2 Understanding Liver Structure, Cell Types, and Function 158
 9.2.1 Structure 158
 9.2.2 Cell Types and their Roles 159
 9.2.3 Liver Parenchymal Cells (Hepatocytes) 160
9.2.4 Non-Parenchymal Cells
9.2.4.1 Kupffer Cells
9.2.4.2 Endothelial Cells
9.2.4.3 Stellate or Fat-Storing Cells

9.3 In Vitro Models That Predict Liver Specific Toxicity
9.3.1 Dose and Systemic Exposure
9.3.2 Determining Species-Specific Metabolic Stability and Metabolic Activation
9.3.3 Metabolic Activation Pathways

9.4 In Vitro Models for Identifying Reactive Metabolites
9.4.1 In Vitro Assays that Identify Metabolic Activation
9.4.2 Determining In Vitro Covalent Binding of Drugs
9.4.3 Determining In Vitro GSH Conjugate Formation
9.4.4 Determining In Vitro GSH Conjugate Formation without Radiolabeling
9.4.5 Species Differences in Metabolism

9.5 Cytochrome P450 Reaction Phenotyping
9.6 Identifying Potential Drug–Drug Interactions
9.6.1 Importance of Cytochrome P450 Inhibition
9.6.2 Role of Cytochrome P450 Induction

9.7 Hepatocytes in Sandwich Culture
9.7.1 Importance of Understanding Metabolic Stability
9.7.2 Formation of Reactive Metabolites
9.7.3 The Importance of Bile Acid Homeostasis in the Liver

9.8 In Vitro Methods for Evaluating PXR, FXR, and CAR Binding
9.8.1 Determining Transporter Inhibition

9.9 Developing Liver-Specific In Vitro Toxicity Screens
9.9.1 Different Models for Different Questions
9.9.2 Early-Toxicity Screening Strategies
9.9.3 Importance of Multiple-Endpoint Analysis and Concentration Response
9.9.4 Liver-Specific Assay Systems
9.9.5 Membrane Integrity
9.9.6 Cell Proliferation
9.9.7 Mitochondrial Function
9.9.8 Determining Changes in Mitochondrial Membranes ($\Delta\Psi$)
9.9.9 Measuring Effects on Glutathione
Chapter 10 Human-based *In Vitro* Experimental Systems for the Assessment of Human-Specific Adverse Drug Effects: Scientific Concepts, Current Applications and Promising Approaches

Albert P. Li

10.1 Introduction

10.2 Human-Specific Drug Toxicity as a Major Reason for the Failure of Prediction of Human Drug Toxicity with Pre-clinical Non-Human Animal Models

10.3 Overcoming Species-Species Differences

10.4 Human Hepatocytes as an *In Vitro* Experimental System for the Evaluation of Human-Specific Drug Properties

10.5 Cryopreserved Human Hepatocyte Assays for the Evaluation of Drug–Drug Interactions

10.5.1 Mechanisms of Metabolic Drug–Drug Interactions

10.5.2 Mechanism-Based Approach for the Evaluation of Drug–Drug Interaction Potential

10.5.2.1 Metabolic Phenotyping

10.5.2.2 Evaluation of Inhibitory Potential for Drug-Metabolizing Enzymes

10.5.2.3 Evaluation of Induction Potential for Drug-Metabolizing Enzymes
Chapter 10

10.6 Higher Throughput Human Hepatocyte-Based Drug–Drug Interaction Studies

10.6.1 384-Well CYP3A Inhibition Assay with Intact Human Hepatocytes
10.6.2 96-Well Time-Dependent Inhibition Assay for CYP3A4 in Human Hepatocytes
10.6.3 96-Well CYP3A4 Induction Assay with Human Hepatocytes

10.7 In Vitro Evaluation of Drug Toxicity

10.8 Overcoming the Major Deficiencies of In Vitro Systems

10.8.1 Target Cell Initiation Theory for Drug-Induced Organ Failure (TACIT)
10.8.2 Practical Application of TACIT
10.8.3 High-Content Endpoint Assays
10.8.4 In Vitro Experimental Model for Multiple Organ Interactions: Integrated Discrete Multiple Organ Co-Culture (IdMOC)

10.9 Conclusions

References

Chapter 11

Pathways of Organ Injury to Define Human Response in Organotypic Cultures

Alison E. M. Vickers

11.1 Introduction

11.1.1 Insight on Mechanism Will Lead to Better Candidate Selection
11.1.2 Translational Mechanistic Models

11.2 Demonstration of In Vitro–In Vivo Correlations

11.2.1 Liver
11.2.2 Kidney

11.3 Bridging Biomarkers in Mechanistic Studies

11.4 Extension of Organ Slice Cultures: Evidence of Repair Pathways

11.5 Liver Screen: Integration of Metabolism and Functional Endpoints

11.6 Stressed Liver Model

11.7 Hemolysis: Co-Culture of Liver and Blood

11.8 Extra-Hepatic Target Organs

11.8.1 Thyroid
11.8.2 Lung

11.9 Outlook

11.10 Conclusions

References
Chapter 12 Predicting Drug-Induced Mitochondrial Dysfunction

Sashi Nadanaciva and Yvonne Will

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>283</td>
</tr>
<tr>
<td>12.2 Overview of Mitochondrial Physiology</td>
<td>284</td>
</tr>
<tr>
<td>12.2.1 ATP Production in Mitochondria</td>
<td>285</td>
</tr>
<tr>
<td>12.2.2 Mitochondria and Reactive Oxygen Species</td>
<td>286</td>
</tr>
<tr>
<td>12.2.3 The Heterogeneous Nature of Mitochondria</td>
<td>287</td>
</tr>
<tr>
<td>12.3 Many Mechanisms Can Lead to DIMD</td>
<td>288</td>
</tr>
<tr>
<td>12.4 In Vitro Methods to Detect DIMD</td>
<td>288</td>
</tr>
<tr>
<td>12.4.1 Measurement of ATP Levels in Cells Grown in Glucose- and Galactose-Containing Media</td>
<td>288</td>
</tr>
<tr>
<td>12.4.2 Mitochondrial Membrane Potential Measurements</td>
<td>289</td>
</tr>
<tr>
<td>12.4.3 Oxygen Consumption Measurements of Mitochondria</td>
<td>290</td>
</tr>
<tr>
<td>12.4.4 Oxygen Consumption and Extracellular Acidification Measurements of Cells</td>
<td>290</td>
</tr>
<tr>
<td>12.4.5 Assays for Measuring the Activity of Enzymes Involved in Oxidative Phosphorylation</td>
<td>290</td>
</tr>
<tr>
<td>12.4.6 Measurement of mtDNA-Encoded Protein Levels in Cells</td>
<td>291</td>
</tr>
<tr>
<td>12.5 What Do In Vitro Methods Tell Us About Drugs That Impair Mitochondrial Function?</td>
<td>291</td>
</tr>
<tr>
<td>12.5.1 Drugs Given in the Treatment of Type II Diabetes</td>
<td>291</td>
</tr>
<tr>
<td>12.5.2 Drugs Given in the Treatment of Dyslipidemia</td>
<td>295</td>
</tr>
<tr>
<td>12.5.3 Antibiotics and Anti-Retrovirals</td>
<td>295</td>
</tr>
<tr>
<td>12.5.4 Non-Steroidal Anti-Inflammatory Drugs</td>
<td>296</td>
</tr>
<tr>
<td>12.6 Challenges That Lie Ahead in Detecting DIMD</td>
<td>297</td>
</tr>
<tr>
<td>12.6.1 Lack of In Silico Methods to Predict DIMD</td>
<td>297</td>
</tr>
<tr>
<td>12.6.2 Paucity of Suitable Animal Models to Detect Mitochondrial Dysfunction</td>
<td>298</td>
</tr>
<tr>
<td>12.6.3 Lack of Validated Biomarkers for Identifying DIMD in Patients</td>
<td>298</td>
</tr>
<tr>
<td>12.6.4 Complexities in Conclusively Attributing Mitochondrial Dysfunction to a Particular Drug in the Real World</td>
<td>300</td>
</tr>
<tr>
<td>12.7 Conclusions</td>
<td>301</td>
</tr>
<tr>
<td>References</td>
<td>301</td>
</tr>
</tbody>
</table>
Chapter 13 Non-Clinical Models for the Evaluation of Mechanisms of Toxicity
Jeffrey A. Kramer

13.1 Introduction 307
13.2 Standard Non-Clinical Toxicology Models 309
 13.2.1 Mammalian Toxicity 309
 13.2.2 Genetic Toxicity and Carcinogenicity 312
 13.2.3 Safety Pharmacology 312
 13.2.4 Reproductive Toxicology 313
 13.2.5 Immunotoxicology 315
13.3 Non-Standard and Mechanistic Non-Clinical Toxicology Models
 13.3.1 In Vivo Models for Toxicity Screening 317
 13.3.2 Models for Non-Oral Dose Routes 317
 13.3.3 Models for Idiosyncratic Toxicity 318
13.4 Genetic Models
 13.4.1 Carcinogenicity Models 319
 13.4.2 Genetic Models for Mechanistic Toxicity 320
13.5 In Vivo Technologies 322
13.6 Conclusions 324
References 325

Chapter 14 In Vivo Approaches to Predictive Toxicology Using Zebrafish
Michael T. Simonich, Jill A. Franzosa and Robert L. Tanguay

14.1 Introduction: Sustainable Discovery 330
14.2 The Challenge: Why We Need Better Toxicology 331
14.3 Why Use Zebrafish for Toxicology? 331
14.4 Zebrafish Toxicological Endpoints are Complex 332
14.5 Specific, Rapid Endpoints of Zebrafish Toxicology 332
 14.5.1 Cardiotoxicity 332
 14.5.2 Hepatotoxicity 333
 14.5.3 Neurotoxicity 334
 14.5.3.1 Neuronal Reporter Fish 334
 14.5.3.2 Behavior 335
 14.5.4 Developmental Toxicity 336
 14.5.5 Ototoxicity 337
14.6 Toxicogenomics: Filling the Tool Box for Predictive Toxicology 337
 14.6.1 Zebrafish Supports a Whole-Animal Approach to Toxicogenomics 338
 14.6.2 Toxicogenomics Approaches 338
Chapter 15 *In Vivo* Genetic Toxicology: Application to Cancer Risk Assessment

Michael J. Schlosser and Christopher S. Farabaugh

15.1 Introduction
15.2 Hazard Identification *versus* Risk Assessment
15.3 Importance of Dose-Response and MoA Data
 15.3.1 Non-DNA-Reactive Genotoxicants
 15.3.2 DNA-Reactive Genotoxicants
15.4 Utility of Thresholds for Genotoxicants
15.5 History of *In Vivo* Models for Genotoxicity Testing
15.6 *In Vivo* Rodent Erythrocyte Micronucleus Assay
 15.6.1 Techniques Used to Score Micronuclei
 15.6.1.1 Microscopy
 15.6.1.2 Flow Cytometry
 15.6.2 Design Considerations
 15.6.3 Stand-Alone Evaluation *versus* Integration with Toxicology Study
 15.6.4 Dose Setting
 15.6.5 Prediction of Rodent Carcinogenicity
 15.6.6 Mode of Action Information
 15.6.6.1 Chromosome Aberrations
15.7 *In Vivo* Unscheduled DNA Synthesis Assay
 15.7.1 Summary of Assay
15.7 Prediction of Rodent Carcinogenicity
15.7.2 Mode of Action Information 371
15.8 In Vivo Alkaline Single-Cell Gel Electrophoresis “Comet” Assay
15.8.1 Summary of Assay 371
15.8.2 Design Considerations 372
15.8.3 Influence of Cytotoxicity 373
15.8.4 Stand-Alone Evaluation versus Integrated with Toxicology Study 374
15.8.5 Prediction of Rodent Carcinogenicity 375
15.8.6 Mode of Action Information 375
15.9 In Vivo Mutagenicity Assays (Transgenic Rodents)
15.9.1 Summary of Assay 377
15.9.2 Design Considerations 378
15.9.3 Prediction of Rodent Carcinogenicity 378
15.9.4 Mode of Action Data 378
15.10 In Vivo Phenotypic Mutagenicity Assays (Endogenous Genes)
15.10.1 Hprt Mutagenicity Assay 379
15.10.2 Pig-a Mutagenicity Assay 380
15.11 In Vivo Genotypic Mutagenicity Assays (Endogenous Genes)
15.11.1 Hprt Gene Mutations 381
15.11.2 Oncogene/Tumor Suppressor Gene Mutations 381
15.11.3 Random Mutations 382
15.12 DNA Adducts 382
15.12.1 Summary of Methods 383
15.12.2 Interpretation 383
15.13 Toxicogenomics 384
15.14 Biomonitoring 384
15.14.1 Cytogenetics 385
15.14.2 Mutations 385
15.14.3 Protein Adducts 385
15.15 Pharmaceuticals 385
15.15.1 In Vivo Genotoxicity and Cancer Prediction 385
15.15.2 Risk versus Benefit 388
15.16 Conclusions 389
References 389

Chapter 16 Predicting Hepatotoxicity In Vivo
Timothy Maziasz

16.1 Introduction 399
16.2 DILI with Marketed Drugs 400
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3 The Liver as a Target Organ</td>
<td>400</td>
</tr>
<tr>
<td>16.4 Mechanisms of Hepatotoxicity</td>
<td>401</td>
</tr>
<tr>
<td>16.5 Drug-Induced Liver Injury</td>
<td>403</td>
</tr>
<tr>
<td>16.5.1 Classical Hepatotoxicity</td>
<td>403</td>
</tr>
<tr>
<td>16.5.2 DILI in the Clinical Setting</td>
<td>404</td>
</tr>
<tr>
<td>16.5.2.1 Characteristics of DILI</td>
<td>404</td>
</tr>
<tr>
<td>16.5.2.2 Idiosyncratic DILI</td>
<td>405</td>
</tr>
<tr>
<td>16.6 Screening for Hepatotoxicity</td>
<td>407</td>
</tr>
<tr>
<td>16.6.1 Current Approach for the Detection of Hepatotoxicity</td>
<td>407</td>
</tr>
<tr>
<td>16.6.1.1 Clinical Chemistry</td>
<td>408</td>
</tr>
<tr>
<td>16.6.1.2 Liver Function</td>
<td>409</td>
</tr>
<tr>
<td>16.6.1.3 Liver Morphology</td>
<td>409</td>
</tr>
<tr>
<td>16.6.1.4 Mitochondrial Evaluation</td>
<td>410</td>
</tr>
<tr>
<td>16.6.1.5 Chemical Reactivity and Structural Alerts</td>
<td>410</td>
</tr>
<tr>
<td>16.6.2 How Successful are the Current Approaches?</td>
<td>411</td>
</tr>
<tr>
<td>16.6.2.1 Retrospective Analysis</td>
<td>411</td>
</tr>
<tr>
<td>16.6.2.2 Historical Drug Withdrawals due to Liver Injury</td>
<td>412</td>
</tr>
<tr>
<td>16.7 Statement of the Problem</td>
<td>412</td>
</tr>
<tr>
<td>16.8 Approaches for Better Prediction of DILI</td>
<td>416</td>
</tr>
<tr>
<td>16.8.1 Initiatives for Better Methods of Prediction</td>
<td>417</td>
</tr>
<tr>
<td>16.8.2 Biomarkers</td>
<td>417</td>
</tr>
<tr>
<td>16.8.3 -omics Technologies</td>
<td>417</td>
</tr>
<tr>
<td>16.8.4 Identification of Sensitive Individuals</td>
<td>418</td>
</tr>
<tr>
<td>16.8.4.1 Polymorphisms in Biotransformation</td>
<td>418</td>
</tr>
<tr>
<td>16.8.4.2 Immunological Reactivity</td>
<td>418</td>
</tr>
<tr>
<td>16.8.4.3 Human Leukocyte Antigens</td>
<td>419</td>
</tr>
<tr>
<td>16.8.4.4 Human Liver Biology</td>
<td>419</td>
</tr>
<tr>
<td>16.8.5 Harbingers of DILI in the Clinic</td>
<td>421</td>
</tr>
<tr>
<td>16.9 New Paradigms for Predicting Human Hepatotoxicity</td>
<td>422</td>
</tr>
<tr>
<td>16.9.1 Rationale for a Multi-Factorial Approach</td>
<td>422</td>
</tr>
<tr>
<td>16.9.2 Binary Models of Hepatotoxicity</td>
<td>422</td>
</tr>
<tr>
<td>16.9.2.1 Inflammation</td>
<td>424</td>
</tr>
<tr>
<td>16.9.2.2 Alcohol</td>
<td>424</td>
</tr>
<tr>
<td>16.9.2.3 Glutathione Status</td>
<td>425</td>
</tr>
<tr>
<td>16.9.2.4 Non-Alcoholic Fatty Liver Disease</td>
<td>426</td>
</tr>
<tr>
<td>16.9.3 Hepatoprotection Mechanisms</td>
<td>426</td>
</tr>
<tr>
<td>16.10 Regulatory Guidance on DILI</td>
<td>427</td>
</tr>
<tr>
<td>16.10.1 Food and Drug Administration</td>
<td>427</td>
</tr>
<tr>
<td>16.10.2 European Union</td>
<td>427</td>
</tr>
<tr>
<td>16.11 Conclusions</td>
<td>429</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 17 Immunotoxicity Testing

17.1 Introduction 436
17.2 Developing Immunotoxicity Testing Strategies 437
17.3 Classification of Approaches for Immunotoxicity Tests
 17.3.1 Classification According to the Type of Immune Response 438
 17.3.2 Classification According to the Experimental Design 439
 17.3.3 Classification Based on the Number of Cell Types Involved 440
17.4 Hypersensitivity Reactions 441
 17.4.1 Background 441
 17.4.2 Pseudoallergic Reactions
 17.4.2.1 Direct Stimulation of Mast Cells 443
 17.4.2.2 Complement Activation 444
17.5 Cytokine Release Assay to Predict for CRS 448
17.6 Human Lymphocyte Activation (HuLA) Assay 451
 17.6.1 Three-dimensional Immune Cell Cultures 452
17.7 In Vitro T-Cell Assays 455
17.8 Conclusions 459
References 460

Chapter 18 In Vitro Developmental Models and Their Applications in Teratology Research

18.1 Introduction 464
18.2 An Overview of Developmental Model Systems 465
 18.2.1 Whole-Embryo Culture Models 465
 18.2.1.1 Mammalian Embryo Culture (Rodent and Rabbit) 465
 18.2.1.2 Chick 466
 18.2.1.3 Zebrafish 467
 18.2.1.4 Frog 468
 18.2.2 Cell Culture Models 469
 18.2.2.1 Rat Micromass 469
 18.2.2.2 Mouse Embryonic Stem-Cell Applications 469
18.3 Applications of In Vitro Models in Developmental Toxicology Screens 470
18.3.1 Background 470
18.3.1.1 Rat Whole-Embryo Culture Assay 470
18.3.1.2 Rat Micromass Assay 471
18.3.1.3 Mouse Embryonic Stem-Cell Test and Refined Assays 472
18.3.1.4 Zebrafish Teratogenicity Assays 473
18.4 Applications of Developmental Models in Mechanistic Studies 475
18.4.1 Delineating Pharmacological-Based or Chemotype-Based Teratogenicity 476
18.4.2 Off-Target Teratogenicity: Advances in Identifying the Teratogenic Target 478
18.4.2.1 SB-236057 and Phage Display 479
18.4.2.2 Homocysteine and Pharmacology Assays 479
18.4.2.3 Thalidomide 481
18.5 Conclusions 481
References 482

Chapter 19 Role and Status of Bridging Biomarkers in Predictive Toxicology
William B. Mattes

19.1 Introduction: Prediction and Bridging Biomarkers 486
19.2 Examples 487
19.2.1 Alanine aminotransferase 487
19.2.2 Troponin 488
19.2.3 Kidney Injury Molecule 1 489
19.2.4 Flow Cytometric Micronucleus Test 490
19.3 Discovery of Bridging Biomarkers 490
19.4 Future Possibilities 492
19.4.1 Unmet Bridging Biomarker Needs 492
19.4.2 Blood mRNA 492
19.4.3 Cytokines 493
19.4.4 Metabonomics 493
19.5 Conclusions 493
References 494

Chapter 20 Renal Toxicity
K. Nasir M. Khan, Gordon C. Hard and Zaher A. Radi

20.1 Introduction: Overview of Basic Principles in Prediction of Renal Toxicity 499
20.1.1 Anatomic Considerations 500
20.1.2 Physiological Considerations 504
20.1.3 Pathologic Considerations
 20.1.3.1 Morphologic Features of Nephrotoxicity 506
 20.1.3.2 Mechanistic Approach to Nephrotoxicity 507
20.1.4 Age, Gender, and Species Considerations 513
20.2 Application of Predictive Methodologies to Assess Renal Toxicity
 20.2.1 In vivo Approaches 515
 20.2.1.1 Assessments in General Toxicology Studies 515
 20.2.1.2 Assessments in Purposely Designed Mechanistic Studies 517
 20.2.1.3 In Vivo Prediction of Renal Carcinogenic Potential 520
 20.2.2 Renal Function Assessments 521
 20.2.3 Biomarkers to Predict Kidney Injury 523
 20.2.3.1 Traditional Biomarkers 523
 20.2.3.2 Novel Biomarkers 526
 20.2.4 Utility of Sophisticated Technologies to Assess Renal Toxicity
 20.2.4.1 Use of "-omics" in Predicting Renal Toxicity 531
 20.2.4.2 In Vitro Techniques in Screening and Mechanistic Studies 532
20.3 Conclusions 534
References 535

Chapter 21 Metabolism-Based Toxicology Prediction
F. Peter Guengerich

21.1 Introduction 542
21.2 Current Working Paradigms 543
21.3 Predicting Metabolism and Toxicity In Silico:
 State-of-the-Art and Challenges 548
 21.3.1 Predicting Genotoxicity 548
 21.3.2 Predicting Metabolism 550
21.4 Problems in Extrapolation From In Vitro to In Vivo Settings in Metabolism and Toxicity 554
21.5 Problems with Extrapolations from Animals to Humans 556
21.6 The Issue of Dose in Experimental Studies and Applications 557
21.7 Conclusions 558
References 558
Chapter 22 Impact of Drug Transporters in the Pharmacological and Adverse Reactions of Drugs

Hiroyuki Kusuhara, Kazuya Maeda and Yuichi Sugiyama

22.1 Introduction 563
22.2 Directional Transport across the Monolayers of Epi- and Endothelial Cells 567
22.3 Drug Transporters Playing Key Roles in the Systemic Elimination of Drugs

22.3.1 Transporters in the Hepatic Elimination of Anionic Drugs
 22.3.1.1 Uptake Transporters in the Sinusoidal Membrane 569
 22.3.1.2 Efflux Transporters in the Canalicular Membrane 574
 22.3.1.3 Efflux Transporters in the Sinusoidal Membrane 575

22.3.2 Transporters in the Hepatic Elimination of Hydrophilic Cationic Drugs 576
22.3.3 Transporters in the Tubular Secretion of Anionic Drugs in the Kidney 576
22.3.4 Transporters in the Tubular Secretion of Cationic Drugs in the Kidney 579

22.4 Transporters Limiting the Penetration of Drugs into the Central Nervous System at the Blood–Brain Barrier 580
22.5 Drug Transporters Involved in the Disposition of Endogenous and Food-Derived Compounds

22.5.1 Drug–Creatinine Interactions 583
22.5.2 Drug–Uric Acid Interactions 584
22.5.3 Metabonomic Analysis to Identify the Endogenous Substrates of Drug Transporters 585

22.6 Conclusions 586
References 586

Chapter 23 Toxicokinetics

Dennis A. Smith

23.1 Introduction 599
23.2 Sparse Sampling and Quality Data 600
23.3 Plasma Concentration–Dose Relationships in a Single Species

23.3.1 Variation in the Pharmacodynamic Phase in a Single Species 602
Chapter 23 Variation in the Plasma Concentration against Time Curve—Influence of Formulation

23.4 Species Differences in the Pharmacokinetic Phase and Drug Effect

23.5 Species Differences in Plasma Protein Binding: the Need to Correct for Free Fraction

23.5.1 Linear and Non-Linear Plasma Protein Binding

23.6 Metabolites and Toxicokinetics

23.7 Differences in the Dynamic Response across Species

23.8 Future Refinements: the use of C_{av}

23.8.1 Induction and Toxicokinetics—the Liver as a Target Organ

23.9 Conclusions

References

Chapter 24 The Role of Computational Systems Biology Models in Toxicity Testing in the 21st Century: an Example with Predictive Multi-Scale Models of the Liver

Sudin Bhattacharya, Qiang Zhang, Robert A. Roth and Melvin E. Andersen

24.1 Introduction

24.2 Toxicity Pathways Underlying Biological Response to Chemicals

24.3 Computational Systems Biology Models to Understand Perturbations in Toxicity Pathways

24.4 The Agent-Based Modeling Approach

24.5 Motivation for Multi-Scale Liver Models

24.5.1 The Effects of TCDD in the Liver

24.5.2 Pharmacokinetic Models for Dioxin and Regional Hepatic Induction of Cytochromes Require Expanding Liver Compartments

24.5.3 Involvement of Non-Parenchymal Cells in Liver Toxicity

24.5.3.1 Sinusoidal Endothelial Cells

24.5.3.2 Kupffer Cells

24.5.3.3 Bile Duct Epithelial Cells

24.5.3.4 Stellate Cells

24.5.3.5 Natural Killer Cells and Natural Killer T-Cells

24.5.3.6 Neutrophils

24.6 Agent-Based Model of the Human Liver
Chapter 25 Animal Models of Idiosyncratic, Drug-Induced Liver Injury

Christine M. Dugan, Patricia E. Ganey and Robert A. Roth

25.1 Introduction 642
25.2 Hepatic Adverse Drug Reactions 642
25.3 Liver as a Target Organ 643
25.4 Intrinsic versus Idiosyncratic ADRs 643
25.5 Mechanisms of Idiosyncratic Drug-Induced Liver Injury 644
 25.5.1 Metabolic Idiosyncrasy 644
 25.5.2 Failure to Adapt 645
 25.5.3 Mitochondrial Toxicity 645
 25.5.3.1 Predictive Value of Models of IDILI Based on the Mitochondrial Toxicity Hypothesis 646
 25.5.4 Hypotheses Involving the Immune System 646
 25.5.4.1 The Acquired Immune Response in IDILI Reactions 646
 25.5.4.2 The Innate Immune Response in IDILI Reactions 649
25.6 A Risk-Based Approach to Development of Animal Models of IDILI using Halothane as an Example 651
 25.6.1 Clinical Spectrum of Halothane Hepatotoxicity 651
 25.6.2 Metabolism of Halothane 652
 25.6.3 Animal Models of Halothane-Induced Hepatotoxicity 653
 25.6.4 A Risk-based Approach to Animal Model Development 655
 25.6.5 Predictive Value of This Approach to Model Development 656
25.7 Conclusions 656
Acknowledgements 658
References 658