Influence of the bifunctional triethoxy-vinyl polydimethylsiloxane (PDMS) coupling mechanisms on the wood flour and polypropylene matrices to enhance the properties of wood plastic composites (WPC)

Von der Fakultät für Lebenswissenschaften
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades einer
Doktorin der Naturwissenschaften
(Dr. rer. nat.)
gegenehmigte

D i s s e r t a t i o n

von Azizah Binti Baharum
aus Terengganu / Malaysia
Contents

Acknowledgements

Abstract

List of Figures

List of Tables

List of Abbreviations

List of Symbols

1 Introduction

1.1 Wood Plastic Composites (WPC)

1.2 Motivation for research

1.3 Research Objectives

1.4 Significance of the study

1.5 Outline of thesis

2 Literature review and background of research

2.1 Wood flour, the raw material in WPC

2.2 Polypropylene plastic, the raw material in WPC

2.3 Role of coupling agent in enhancing WPC performance

2.3.1 Organic peroxides

2.3.2 Silane coupling agents

2.3.3 Maleic anhydride coupling agents

2.3.4 Isocyanates coupling agents

2.3.5 Polydimethylsiloxane Coupling Agents

2.4 Theoretical Basis of Adhesion

2.5 Interphase Characterization and Dynamic Mechanical Analysis

2.6 Processing WPC using a twin-screw extrusion compounding

3 Materials and Methods

3.1 Materials

3.1.1 Preparation of wood particle

3.2 Treatment

3.2.1 Impregnation of wood flour

3.2.2 Pre-mixing

3.2.3 Master batch and emulsion

3.3 Compounding

3.4 WPC panels preparation

3.5 Testing and analysing

3.5.1 Mechanical properties

3.5.2 Water absorption test

3.5.3 Moisture absorption test

3.5.4 Thermal analysis

3.5.5 ATR-FTIR analysis

3.5.6 SEM/SEM-EDX

3.5.7 Microscopic image analysis

3.5.8 Free sugar analysis
3.5.9 Overall processing procedure

4 Influence of the coupling agent amount on the performance of WF/PP composites

4.1 Weight percent gain and mass uptake
4.2 FTIR analysis
4.3 Moisture absorption
4.4 Mechanical properties

5 Influence of DCP initiator to WF/PP systems

5.1 Amount of DCP
5.2 Effect of DCP on flexural strength of different PP compositions
5.3 Degradation and DMA analysis of glass transition temperature
5.4 Effect of DCP on Modulus of elasticity and impact strength with different PP compositions
5.5 DCP contents with different WF/PP compositions
5.6 DCP as a radical initiator of the very high molecular weight bifunctional triethoxy-vinyl PDMS
5.7 SEM and SEM-EDX analysis of very high molecular weight bifunctional triethoxy-vinyl PDMS treated composites with 0.1% DCP
5.8 Microscopic analysis of very high molecular weight bifunctional triethoxy-vinyl PDMS composites with 0.1% DCP stained specimens
5.9 Effect of DCP and very high molecular weight bifunctional triethoxy-vinyl PDMS treatment on water absorption
5.10 DMA analysis of very high molecular weight bifunctional triethoxy-vinyl PDMS treated composite with 0.1% DCP

6 Influence of coupling agent functional groups and molecular weights on the performance of WF/PP composites

6.1 Mechanical properties for different functional groups PDMS
6.2 DMA analysis for different functional groups PDMS
6.3 Reaction mechanisms of WF/PP composites treated with bifunctional triethoxy-vinyl PDMS
6.4 ATR-FTIR analysis of WF/PP composites treated with bifunctional triethoxy-vinyl PDMS
6.5 Microscopic images of WF/PP composites treated with bifunctional triethoxy-vinyl PDMS
6.6 Influence of different molecular weight bifunctional triethoxy-vinyl PDMS on WF/PP composites performance

7 Very high molecular weight bifunctional triethoxy-vinyl PDMS coupling agent performance comparisons with industrial established MAPP

7.1 Mechanical properties
7.2 Microscopic images
7.3 DMA analysis
7.4 Water absorption
7.4.1 Sugar analysis and water absorption

8 The effect of treatment conditions and PP composition on WPC performance

8.1 Mechanical properties
8.2 Water absorption
8.3 DMA analysis