Bioisosteres in Medicinal Chemistry
Contents

List of Contributors XI
Preface XV
A Personal Foreword XVII

Part One Principles 1

1 Bioisosterism in Medicinal Chemistry 3
Nathan Brown

1.1 Introduction 3
1.2 Isosterism 3
1.3 Bioisosterism 6
1.4 Bioisosterism in Lead Optimization 9
1.4.1 Common Replacements in Medicinal Chemistry 9
1.4.2 Structure-Based Drug Design 9
1.4.3 Multiobjective Optimization 12
1.5 Conclusions 13
References 14

2 Classical Bioisosteres 15
Caterina Barillari and Nathan Brown

2.1 Introduction 15
2.2 Historical Background 15
2.3 Classical Bioisosteres 17
2.3.1 Monovalent Atoms and Groups 17
2.3.2 Bivalent Atoms and Groups 17
2.3.3 Trivalent Atoms and Groups 18
2.3.4 Tetravalent Atoms 19
2.3.5 Ring Equivalents 19
2.4 Nonclassical Bioisosteres 20
2.4.1 Carbonyl Group 20
2.4.2 Carboxylic Acid 21
2.4.3 Hydroxyl Group 22
2.4.4 Catechol 22
Contents

2.4.5 Halogens 23
2.4.6 Amide and Esters 24
2.4.7 Thiourea 25
2.4.8 Pyridine 26
2.4.9 Cyclic Versus Noncyclic Systems 27
2.5 Summary 27
References 27

3 Consequences of Bioisosteric Replacement 31
Dennis A. Smith and David S. Millan
3.1 Introduction 31
3.2 Bioisosteric Groupings to Improve Permeability 32
3.3 Bioisosteric Groupings to Lower Intrinsic Clearance 40
3.4 Bioisosteric Groupings to Improve Target Potency 43
3.5 Conclusions and Future Perspectives 47
References 49

Part Two Data 53

4 BIOSTER: A Database of Bioisosteres and Bioanalogues 55
István Ujváry and Julian Hayward
4.1 Introduction 55
4.2 Historical Overview and the Development of BIOSTER 56
4.2.1 Representation of Chemical Transformations for Reaction Databases 56
4.2.2 The Concept of “Biostatic Transformation” 57
4.2.3 Other Analogue and Bioisostere Databases 58
4.3 Description of BIOSTER Database 59
4.3.1 Coverage and Selection Criteria 59
4.3.2 Sources 59
4.3.3 Description of the Layout of Database Records 60
4.3.3.1 ID Code 60
4.3.3.2 Bioisosteric Transformation 60
4.3.3.3 Citation(s) 62
4.3.3.4 Activity 63
4.3.3.5 Fragments 63
4.3.3.6 Component Molecules and Fragments 64
4.4 Examples 64
4.4.1 Benzodioxole Bioisosteres 65
4.4.2 Phenol Bioisosteres 66
4.4.3 Ketoamides 66
4.5 Applications 69
4.6 Summary 70
4.7 Appendix 70
References 71
5 Mining the Cambridge Structural Database for Bioisosteres 75
Colin R. Groom, Tjelvar S. G. Olsson, John W. Liebeswetz, David A. Bardwell, Ian J. Bruno, and Frank H. Allen
5.1 Introduction 75
5.2 The Cambridge Structural Database 76
5.3 The Cambridge Structural Database System 78
5.3.1 ConQuest 78
5.3.2 Mercury 78
5.3.3 WebCSD 79
5.3.4 Knowledge-Based Libraries Derived from the CSD 80
5.4 The Relevance of the CSD to Drug Discovery 83
5.5 Assessing Bioisosteres: Conformational Aspects 84
5.6 Assessing Bioisosteres: Nonbonded Interactions 86
5.7 Finding Bioisosteres in the CSD: Scaffold Hopping and Fragment Linking 91
5.7.1 Scaffold Hopping 91
5.7.2 Fragment Linking 92
5.8 A Case Bioisosterism of 1H-Tetrazole and Carboxylic Acid Groups 94
5.8.1 Conformational Mimicry 94
5.8.2 Intermolecular Interactions 94
5.9 Conclusions 97
References 98

6 Mining for Context-Sensitive Bioisoteric Replacements in Large Chemical Databases 103
George Papadatos, Michael J. Bodkin, Valerie J. Gillet, and Peter Willett
6.1 Introduction 103
6.2 Definitions 104
6.3 Background 105
6.4 Materials and Methods 109
6.4.1 Human Microsomal Metabolic Stability 109
6.4.2 Data Preprocessing 109
6.4.3 Generation of Matched Molecular Pairs 110
6.4.4 Context Descriptors 111
6.4.4.1 Whole Molecule Descriptors 111
6.4.4.2 Local Environment Descriptors 112
6.4.5 Binning of AP Values 112
6.4.6 Charts and Statistics 112
6.5 Results and Discussion 113
6.5.1 General Considerations 123
6.6 Conclusions 124
References 125
Contents

Part Three Methods 129

7 **Physicochemical Properties** 131
Peter Ertl

7.1 Introduction 131
7.2 Methods to Identify Bioisosteric Analogues 132
7.3 Descriptors to Characterize Properties of Substituents and Spacers 132
7.4 Classical Methods for Navigation in the Substituent Space 135
7.5 Tools to Identify Bioisosteric Groups Based on Similarity in Their Properties 136
7.6 Conclusions 138
References 138

8 **Molecular Topology** 141
Nathan Brown

8.1 Introduction 141
8.2 Controlled Fuzziness 141
8.3 Graph Theory 142
8.4 Data Mining 144
8.4.1 Graph Matching 144
8.4.2 Fragmentation Methods 145
8.5 Topological Pharmacophores 146
8.6 Reduced Graphs 149
8.7 Summary 151
References 152

9 **Molecular Shape** 155
Pedro J. Ballester and Nathan Brown

9.1 Methods 156
9.1.1 Superposition-Based Shape Similarity Methods 156
9.1.2 Superposition-Free Shape Similarity Methods 158
9.1.3 Choosing a Shape Similarity Technique for a Particular Project 160
9.2 Applications 161
9.3 Future Prospects 164
References 165

10 **Protein Structure** 167
James E. J. Mills

10.1 Introduction 167
10.2 Database of Ligand–Protein Complexes 168
10.2.1 Extraction of Ligands 168
10.2.2 Assessment of Ligand and Protein Criteria 169
10.2.3 Cavity Generation 170
10.2.4 Generation and Validation of SMILES String 170
10.2.5 Generation of FASTA Sequence Files 171
10.2.6 Identification of Intermolecular Interactions 172
10.3 Generation of Ideas for Bioisosteres 173
10.3.1 Substructure Search 173
10.3.2 Sequence Search 175
10.3.3 Binding Pocket Superposition 175
10.3.4 Bioisostere Identification 176
10.4 Context-Specific Bioisostere Generation 177
10.5 Using Structure to Understand Common Bioisosteric Replacements 178
10.6 Conclusions 180

References 180

Part Four Applications 183

11 The Drug Guru Project 185
Kent D. Stewart, Jason Shanley, Karam B. Alsayyed Ahmed, and J. Phillip Bowen
11.1 Introduction 185
11.2 Implementation of Drug Guru 187
11.3 Bioisosteres 188
11.4 Application of Drug Guru 194
11.5 Quantitative Assessment of Drug Guru Transformations 195
11.6 Related Work 197
11.7 Summary: The Abbott Experience with the Drug Guru Project 197
References 198

12 Bioisosteres of an NPY-YS Antagonist 199
Nicholas P. Barton and Benjamin R. Bellenie
12.1 Introduction 199
12.2 Background 199
12.3 Potential Bioisostere Approaches 201
12.4 Template Molecule Preparation 204
12.5 Database Molecule Preparation 206
12.6 Alignment and Scoring 206
12.7 Results and Monomer Selection 207
12.8 Synthesis and Screening 208
12.9 Discussion 209
12.10 SAR and Developability Optimization 211
12.11 Summary and Conclusion 214
References 214
13 Perspectives from Medicinal Chemistry 217
Nicholas A. Meanwell, Marcus Gastreich, Matthias Rarey, Mike Devereux,
Paul L.A. Popelier, Gisbert Schneider, and Peter Willett
13.1 Introduction 217
13.2 Pragmatic Bioisostere Replacement in Medicinal Chemistry:
A Software Maker’s Viewpoint 219
13.3 The Role of Quantum Chemistry in Bioisostere Prediction 221
13.4 Learn from “Naturally Drug-Like” Compounds 223
13.5 Bioisostericism at the University of Sheffield 224
References 227

Index 231