INTRODUCTION

Michael J. Barratt and Donald E. Frail

References

PART I DRUG REPOSITIONING: BUSINESS CASE, STRATEGIES, AND OPERATIONAL CONSIDERATIONS

1. Drug Repositioning: The Business Case and Current Strategies to Repurpose Shelved Candidates and Marketed Drugs

John Arrowsmith and Richard Harrison

1.1. Introduction
1.2. Is Pharmaceutical R&D Failing?
1.3. Why Are Drugs Failing?
1.4. Overcoming Failures
1.5. Drug Repurposing
1.5.1. The Case for Repurposing
1.6. Examples of Successful Repurposing
1.6.1. Drug Candidates That Lacked Efficacy in their Primary Indications
1.6.2. Drugs That Failed for Safety Reasons in the Primary Patient Populations
1.6.3. Drug Candidates That Were Discontinued for Strategic Reasons
1.7. Repurposing Existing Drugs
1.7.1. Line Extensions
1.7.2. New Indications for Existing Drugs
4. Regulatory Considerations and Strategies for Drug Repositioning

Ken Phelps

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>History/Birth of the 505(b)(2)</td>
<td>67</td>
</tr>
<tr>
<td>4.2.1</td>
<td>An Era of Increased Scrutiny</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The Birth of 505(b)(2)</td>
<td>68</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Defining 505(b)(2)</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4</td>
<td>ANDA Suitability Petition Versus 505(b)(2)</td>
<td>69</td>
</tr>
<tr>
<td>4.2.5</td>
<td>The Pediatric Rule</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Sources of Information Cited in 505(b)(2) Submissions</td>
<td>71</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Standards of Acceptability for Referenced Information</td>
<td>71</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Defining “Substantial Evidence” of Efficacy</td>
<td>71</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The Quantity of Evidence Required</td>
<td>72</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Documenting the Quality of Evidence Supporting an Effectiveness Claim</td>
<td>73</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Reliance on Published Reports of Studies</td>
<td>74</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Submission of Published Literature Reports Alone</td>
<td>74</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Reliance on Studies with Limited Monitoring</td>
<td>75</td>
</tr>
<tr>
<td>4.3.8</td>
<td>FDA Labeling and Summary Basis of Approval (SBA)</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Where to Find the Public Information Needed for 505(b)(2) Submissions</td>
<td>76</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Publications</td>
<td>76</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Databases</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>Intellectual Property and Data Exclusivity</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>505(b)(2) Case Studies</td>
<td>79</td>
</tr>
<tr>
<td>4.6.1</td>
<td>NovoLog®—Approval for a New Route for Insulin Administration, Based on a Single Clinical Study</td>
<td>80</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Makena®—Use of a Publicly Funded Study</td>
<td>80</td>
</tr>
<tr>
<td>4.6.3</td>
<td>TRIESENCE®—An NDA with Minimal New Studies</td>
<td>82</td>
</tr>
<tr>
<td>4.6.4</td>
<td>COLCRYS®—A Drug Marketed for Centuries without Proper Use and Understanding, Finally Approved Under 505(b)(2)</td>
<td>83</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Ulesfix™—A Common Cosmetic Excipient Given New Molecular Entity Status Under 505(b)(2)</td>
<td>83</td>
</tr>
<tr>
<td>4.6.6</td>
<td>CAFCIT®—An Example of a Common Commodity Approved Under 505(b)(2) as a New Molecular Entity and Given Orphan Status</td>
<td>84</td>
</tr>
</tbody>
</table>
PART II APPLICATION OF TECHNOLOGY PLATFORMS TO UNCOVER NEW INDICATIONS AND REPURPOSE EXISTING DRUGS

5. Computational and Bioinformatic Strategies for Drug Repositioning
Richard Mazzarella and Craig Webb

5.1. Introduction 91
5.2. Knowledge Mining and Integration Strategies 92
5.2.1. Genetic Analysis Methods 102
5.2.2. Connectivity Map Strategy 107
5.2.3. Network Analysis Methods 114
5.3. Case Study: Application of Computational Drug Repositioning Approaches in the Van Andel Research Institute Personalized Medicine Initiative 119
5.4. Summary and Future Directions 127
References 128

6. Mining Scientific and Clinical Databases to Identify Novel Uses for Existing Drugs
Christos Andronis, Anuj Sharma, Spyros Deftereos, Vassilis Virvilis, Ourania Konstanti, Andreas Persidis, and Aris Persidis

6.1. Introduction 137
6.2. Data Sources 138
6.2.1. Bioinformatics-Related Resources 139
6.2.2. Microarray Repositories 141
6.2.3. Pathway Databases 141
6.2.4. Cheminformatics-Related Resources 143
6.2.5. Drug Target Space 144
6.2.6. Drug and Disease Data Sources 144
6.3. Ontologies 145
6.3.1. The Medical Subject Headings (MeSH) Thesaurus 146
6.3.2. UMLS 146
6.4. Literature Corpora and Mining 147
6.4.1. Information Extraction 147
6.4.2. Publicly Available Literature Mining Corpora 147
6.5. Strategies to Infer Novel Associations between Drugs, Drug Targets, and Human Diseases: Case Studies 148
 6.5.1. Graph and Machine Learning Approaches Integrating Chemical Data 148
 6.5.2. Gene Expression Profiling and Machine Learning 152
 6.5.3. Structural Data and Machine Learning 152
 6.5.4. Text Mining 153
 6.5.5. Ontology-Based Approaches 155
6.6. Further Reading 156
6.7. Closing Remarks 156
References 157

7. Predicting the Polypharmacology of Drugs: Identifying New Uses through Chemoinformatics, Structural Informatics, and Molecular Modeling-Based Approaches 163
 Li Xie, Sarah L. Kinnings, Lei Xie, and Philip E. Bourne
 7.1. Introduction 163
 7.2. The Concept of Polypharmacology and Its Relationship to Drug Resistance, Side Effects, and Drug Repositioning 164
 7.3. The Importance of Drug Repositioning in the Pharmaceutical Industry 168
 7.4. Chemical and Protein Structure-Based Approaches 170
 7.4.1. Ligand Similarity-Based Approaches 170
 7.4.2. Ligand Binding Site Similarity-Based Approaches 177
 7.4.3. Structure-Based Virtual Ligand Screening 185
 7.5. Molecular Activity Similarity-Based Methods 188
 7.6. Other Approaches through Data and Text Mining 192
 7.7. Conclusion 193
 References 194

8. Systematic Phenotypic Screening for Novel Synergistic Combinations: A New Paradigm for Repositioning Existing Drugs 207
 Margaret S. Lee
 8.1. Introduction 207
 8.2. Fundamental Approaches 208
 8.3. Keys to Success 211
 8.3.1. What’s in a Model? 211
 8.3.2. Complex Biology 216
 8.3.3. Screening Operations 220
 8.3.4. Data Collection and Analysis 224
8.4. Opportunities and Challenges in Combination Drug Development
8.4.1. Intellectual Property
8.4.2. Reverse Pharmacology
8.4.3. Preclinical Translation
8.4.4. Embodiment of the Drug Product
8.4.5. Clinical Development

8.5. Case Studies
8.5.1. Synavive™—The Fixed Dose Combination of Prednisolone and Dipyridamole
8.5.2. Adenosine A2A Receptor Agonist Synergies

8.6. Concluding Remarks
Acknowledgments
References

9. Phenotypic In Vivo Screening to Identify New, Unpredicted Indications for Existing Drugs and Drug Candidates
Michael S. Saporito, Christopher A. Lipinski, and Andrew G. Reaume

9.1. Introduction
9.2. Settings for In Vivo Drug Repositioning
9.2.1. Post-Approval Clinical Studies
9.2.2. Preapproval Clinical Studies
9.2.3. Predevelopment In Vivo Studies
9.3. In Vivo Models
9.3.1. Target-Based In Vivo Models
9.3.2. Pathology-Based In Vivo Models
9.4. Advantages of Compound Screening in Phenotypic In Vivo Models
9.4.1. Broad Target Screening
9.4.2. CNS Diseases
9.4.3. Network Modulation and Polypharmacology
9.5. Design of an Optimal Drug Repositioning Platform
9.5.1. Evolution of High-Throughput Focused Phenotypic Strategies
9.5.2. Low-Throughput, Broad Spectrum Strategies
9.5.3. theraTRACE®: A High-Throughput, Broad Therapeutic Area Approach
9.5.4. Design of the theraTRACE® Platform
9.6. Results from Phenotypic Screening Studies
9.6.1. On-Target Activities
9.6.2. Off-Target Activities
9.7. Compound Selection for Drug Repositioning
9.8. Exclusivity Strategies for Repositioned Drugs Identified by Phenotypic Screening 281
9.9. Summary 282
References 283

10. Old Drugs Yield New Discoveries: Examples from the Prodrug, Chiral Switch, and Site-Selective Deuteration Strategies 291

Adam J. Morgan, Bhaumik A. Pandya, Craig E. Masse, and Scott L. Harbeson

10.1. Introduction 291
10.2. Prodrug Approach 292
 10.2.1. Introduction 292
 10.2.2. Fosamprenavir (Lexiva®) 294
 10.2.3. Lisdexamfetamine (Vyvanse®) 296
 10.2.4. Fospropofol (Lusedra®) 297
 10.2.5. Paliperidone Palmitate (Invega® Sustenna®) 299
 10.2.6. Gabapentin Enacarbil (Horizant®) 301
 10.2.7. Conclusions 303
10.3. Chiral Switch Approach 303
 10.3.1. Introduction 303
 10.3.2. Omeprazole (Prilosec®) to Esomeprazole (Nexium®) 306
 10.3.3. d,l-threo-Methylphenidate HCl (Ritalin®) to d-threo-Methylphenidate HCl (Focalin®) 309
 10.3.4. Citalopram (Celexa®) to Escitalopram (Lexapro®) 310
 10.3.5. Cetirizine (Zyrtec®) to Levocetirizine (Xyzal®) 312
 10.3.6. Atracurium (Tracrium®) to Cisatracurium (Nimbex®) 315
 10.3.7. Bupivacaine (Marcaine®/Sensorcaine®) to Levobupivacaine (Chirocaine®) 317
 10.3.8. Conclusion 318
10.4. Site-Selective Deuteration Approach 319
 10.4.1. Introduction 319
 10.4.2. Primary Deuterium Isotope Effect 319
 10.4.3. Deuterium Effects upon Pharmacology, Metabolism, and Pharmacokinetics 321
 10.4.4. CTP-518, Deuterated Atazanavir 325
 10.4.5. BDD-10103, Deuterated Tolperisone 326
 10.4.6. SD-254, Deuterated Venlafaxine 327
 10.4.7. Fludalanine (MK-641) 328
 10.4.8. CTP-347, Deuterated Paroxetine 329
10.5. Conclusion 331
References 332
PART III ACADEMIC AND NONPROFIT INITIATIVES
AND THE ROLE OF ALLIANCES IN THE DRUG
REPOSITIONING INDUSTRY 345

11. Repurposing Drugs for Tropical Diseases: Case Studies and
Open-Source Screening Initiatives 347
Curtis R. Chong

11.1. Introduction 347
11.2. Drug Development for Neglected Diseases 348
11.3. Drug Repurposing in Malaria 352
 11.3.1. Dapsone 352
 11.3.2. Fosmidomycin 353
 11.3.3. Pafuramidine (DB289) 354
11.4. Drug Repurposing in Leishmania 355
 11.4.1. Miltefosine 355
 11.4.2. Amphotericin 356
 11.4.3. Paromomycin 357
11.5. Drug Repurposing in African Trypanosomiasis (Sleeping
Sickness) 358
 11.5.1. Eflornithine 358
11.6. Open-Source Screening Initiatives—A Systematic
Approach to Identifying New Uses for Existing Drugs 361
11.7. High-Throughput Screening of Existing Drugs for
Tropical Diseases: The Johns Hopkins Clinical Compound
Screening Initiative 362
11.8. Identification of Astemizole as an Antimalarial Agent by
Screening a Clinical Compound Library 363
11.9. Screening of Existing Drug Libraries for Other
Tropical Diseases 368
11.10. Conclusions and Future Directions 372
References 373

12. Drug Repositioning Efforts by Nonprofit Foundations 389

12.1. Introduction 389
 Donald E. Frail
12.2. Repositioning of Drugs for Hematological Malignancies:
 Perspective from the Leukemia & Lymphoma Society 391
 Louis DeGennaro, Aaron Schimmer, James Kasper, and
 Richard Winneker
 12.2.1. Introduction 391
 12.2.2. The Hematological Malignancies 391
 12.2.3. The Leukemia & Lymphoma Society (LLS) 392
 12.2.4. The Therapy Acceleration Program (TAP)
 of the LLS 392
12.2.5. Biotechnology Accelerator (BA) Division 392
12.2.6. Clinical Trials (CT) Division 393
12.2.7. Academic Concierge (AC) Division 393
12.2.8. Partnering to Reposition a Drug to Treat Hematological Malignancies—A Case Study of Ciclopirox Olamine (CPX) 395
12.2.9. Summary and Lessons Learned 399

12.3. Repositioning Drugs for Parkinson’s Disease: Perspective from the Michael J. Fox Foundation 399

Todd B. Sherer, Alison Urkowitz, and Kuldip D. Dave

12.3.1. Parkinson’s Disease: Research Challenges and Opportunities 399
12.3.2. The Michael J. Fox Foundation for Parkinson’s Research 401
12.3.3. MJFF’s Work in Drug Repositioning 403
12.3.4. Repositioning Drugs for PD: Disease-Modifying Therapy Case Studies 405
12.3.5. Repositioning Drugs for PD: Symptomatic Treatments for PD 409
12.3.6. An Open, Investigator-Initiated Solicitation: Repositioning Drugs for PD 2011 413
12.3.7. Conclusions from MJFF Drug Repositioning Efforts for PD 417

12.4. Repositioning Drugs for Polycystic Kidney Disease: Perspectives from the Polycystic Kidney Disease Foundation 418

Jill Panetta and John McCall

12.4.1. Introduction: Accelerating Treatments for Patients (ATP) Program 418
12.4.2. PKD 418
12.4.3. Drug Repurposing: De-Risking and Expediting the Drug Discovery and Development Process 420
12.4.4. The PKD Foundation Methodology 421
12.4.5. Lessons Learned To Date 425
References 426

Aris Persidis and Elizabeth T. Stark

13.1. Introduction 433
13.2. Large Pharmaceutical Companies 434
13.2.1. Extracting Maximum Value from the R&D Portfolio 434
13.2.2. Sharing Financial Risk 435
13.2.3. Speed to Market 436
13.2.4. Loss of Exclusivity 436
CONTENTS

13.3. Franchise Growth for Specialty Pharmaceutical Companies 437
13.4. Small Biotechnology Companies—Reducing the Risk of Company Failure 438
 13.4.1. Case Studies 438
13.5. Expanding the Value Proposition for Venture Capital 439
13.6. Speed and Safety for Patient Advocacy Groups 440
13.7. Academia—Access to Drugs for Research Use 441
13.8. Future Prospects for Business Deals in the Repositioning Industry 441
References 443

Akinori Mochizuki and Makiko Aoyama

14.1. Introduction 445
14.2. Historical Perspective 446
14.3. DRP® 447
 14.3.1. Knowledge-Base Versus Serendipitous Screening 449
 14.3.2. In-House Versus Collaboration 449
 14.3.3. High-Throughput Screening (In Vitro) Versus Animal Model 450
 14.3.4. Marketed Drug Versus Halted Drug 450
14.4. Accessing Halted Compounds 451
14.5. Establishing a Strong Screening Network 452
14.6. Patenting 453
14.7. Limitations 453
 14.7.1. Compound Material 453
 14.7.2. Dependence on Screening Partners 454
 14.7.3. Patent Ownership 454
 14.7.4. Value Capture of Findings Outside of Therapeutic Focus 454
14.8. Long-Term Perspective—Future of Repositioning 454
14.9. Conclusion 455

APPENDIX ADDITIONAL DRUG REPOSITIONING RESOURCES AND LINKS 457
Mark A. Mitchell and Michael J. Barratt

INDEX 469