ANTIBODY-MEDIATED
DRUG DELIVERY SYSTEMS
Concepts, Technology, and Applications

Edited by

YASHWANT PATHAK
Department of Pharmaceutical Sciences
College of Pharmacy
University of South Florida
Tampa, Florida

SIMON BENITA
The Institute for Drug Research of the School of Pharmacy
The Hebrew University of Jerusalem
Jerusalem, Israel

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

CONTRIBUTORS

xv

PREFACE

xix

CHAPTER 1
ANTIBODY-MEDIATED DRUG DELIVERY SYSTEMS: GENERAL REVIEW AND APPLICATIONS
Navdeep Kaur, Karthikeyan Subramani, and Yashwant Pathak
1

1 Historical Perspective
2 Antibodies
 2.1 Structure of Antibodies
 2.2 Types of Antibodies
 2.3 Antibody Development
3 Antibody Mediation
4 Antibody-Mediated Drug Delivery Systems
5 Applications
6 Recent Trends
7 Future Trends
References

CHAPTER 2
IMMUNOLIPOSOMES FOR CARDIOVASCULAR TARGETING
Tatyana Levchenko, William Hartner, and Vladimir P. Torchilin
13

1 Introduction
2 Immunoliposome Targeting to Pathological Regions of the Vessel Wall
3 Liposome Internalization by Endothelial Cells
4 Targeting of Atherosclerotic Lesions for Tomographic Imaging
5 Antibody-Mediated Liposomes for Diagnosis of Thrombosis
6 Thrombolytic Therapy with Immunoliposomes
7 Targeted Sealing of Cell Membrane Lesions: Preservation of Cell Viability
8 Accumulation of Liposomes and Immunoliposomes in the Ischemic Heart
9 Immunoliposomes as a Drug and Gene Delivery Vehicle to the Infarcted Heart
References

CHAPTER 3
ANTIBODY-MEDIATED DRUG DELIVERY SYSTEMS FOR BREAST CANCER THERAPEUTICS
Leonor Munoz Alcivar and Yashwant Pathak
35

1 Introduction
2 Breast Cancer
 2.1 Statistics
 2.2 Common Treatment

CHAPTER 4 DEVELOPMENT OF IMMUNONCONJUGATES FOR IN VIVO DELIVERY: CANCER DIAGNOSIS, IMAGING, AND THERAPY

Arutselvan Natarajan

1 Introduction 57
 1.1 Development of mAbs for Specific Targets 57
 1.2 Naked Antibodies for Cancer Therapy 57
2 Immunoconjugates 61
3 Immunoconjugates in Cancer Therapy 62
 3.1 Radioimmunoconjugates 62
 3.2 Pre-targeted Therapy 63
 3.3 Antibody–Drug Conjugate 64
 3.4 Antibody–Toxin Conjugate 66
 3.5 Antibody–siRNA conjugate 68
 3.6 Antibody–Cytokine Conjugate 68
 3.7 Antiproliferative Conjugates 68
 3.8 Immunoconjugates with pH-Activatable Probe 69
4 Immunoconjugates for Imaging 69
 4.1 Immuno-SPECT 69
 4.2 Immuno-PET 70
CHAPTER 5 MATHEMATICAL MODELS OF ANTI-TNF THERAPIES AND THEIR CORRELATION WITH TUBERCULOSIS
Simeone Marino, Mohammad Fallahi-Sichani, Jennifer J. Linderman, and Denise E. Kirschner

1 Introduction 83
2 Tuberculosis, TNF, and Anti-TNF Drugs 84
 2.1 Epidemiology of Tuberculosis 84
 2.2 TB Immunology and the Role of TNF 85
 2.3 TNF Biology 85
 2.4 Anti-TNF Drugs 87
3 Theoretical Models To Study TB Infection 88
 3.1 ODE Model: TB Reactivation Based on TNF Bioavailability and Fraction of TNF That Is Soluble vs. Membrane-Bound Fraction 89
 3.2 PDE Model: TNF Receptor Dynamics and Cellular Organization in a Tuberculosis Granuloma 91
4 Present and Future Work 96
References 98

CHAPTER 6 TARGETED NANOPARTICLES IN RADIOTHERAPY
Misty Muscarella and Yashwant Pathak

1 Introduction 105
2 Nanoparticles 106
 2.1 Nanoparticle Technology 106
 2.2 Nanoparticle Compositions and Functions for Cancer Therapy 106
 2.3 Nanotechnology Advantages in Cancer Therapy 107
 2.4 Nanoparticle Delivery Systems 107
 2.5 Role of Monoclonal Antibodies in Specificity 108
 2.6 Drug-Encapsulated Hollow Protein Nanoparticles 108
 2.7 Targeting by Nanoparticles 109
3 Radiotherapy 110
 3.1 Drawbacks to Radiotherapy 110
 3.2 Radioimmunotherapy 111
4 Nanoparticles in Radiotherapy 111
 4.1 Radiolabeled Nanoparticles for Antiangiogenesis Therapy 112
 4.2 Radiolabeled Nanoparticles for Imaging 112
 4.3 Role of Nanoparticles in Radioimmunotherapy 113
 4.4 Nanotargeted Radionuclides for Cancer Therapy and Imaging 113
 4.5 Modifying Nanocarriers 114
 4.6 Carbon Nanotubes in Radiation Therapy and Imaging 115
 4.7 Carbon Nanotubes in Microradiotherapy 116
 4.8 Gold Nanoparticle Radiation Therapy 116
 4.9 Enhancement of Radiation Therapy by Gold Nanoparticles 117
CHAPTER 10 METHODS FOR NANOPARTICLE CONJUGATION TO MONOCLONAL ANTIBODIES
Junling Li and Chin K. Ng

1 Introduction 191
2 Current Nanoparticle Systems used for Conjugation with mAbs 191
3 Conjugation Methods 192
 3.1 Adsorption Binding 192
 3.2 Covalent Binding 192
4 Conclusions 202
References 202

CHAPTER 11 SINGLE-USE SYSTEMS IN ANIMAL CELL-BASED BIOPRODUCTION
William G. Whitford

1 Introduction 209
2 Component Offerings 214
 2.1 Bioprocess Containers 215
 2.2 Single-Use Mixers 216
 2.3 Single-Use Bioreactors 216
 2.4 Downstream Applications 217
3 Characteristics of Single-Use Systems and Their Applications 218
 3.1 Cost and Finance Advantages 218
 3.2 Materials Acceptability 219
 3.3 Technical Transfer and Scale-up 220
 3.4 Products and Platforms Supported 220
 3.5 Regulatory Requirements 220
 3.6 Probes, Sensors, and Sampling 221
 3.7 Coupling and Transfer 221
 3.8 Environmental Footprint 221
 3.9 Flexibility 222
 3.10 Performance 222
 3.11 QbD and PAT 224
 3.12 Scalability 225
 3.13 Modularity and Reconfigurability 225
 3.14 Automation Amenability 225
 3.15 Improved Compliance Values 226
References 226
CHAPTER 12 IMMUNOLIPOSOMES FOR SPECIFIC DRUG DELIVERY
Manuela Calin

1 Introduction: Advances in Liposome Formulation 229
2 Design of Immunoliposomes for Site-Specific Drug Delivery 230
 2.1 Immunoliposome Preparation 231
 2.2 Types of Immunoliposomes 237
3 Cellular-Specific Targeting of Immunoliposomes 242
 3.1 In Vitro Targeting of Immunoliposomes 242
 3.2 In Vivo Applications of Immunoliposomes 243
4 Cellular-Specific Internalization of Immunoliposomes 246
5 Immunoliposomes in Diagnosis and Therapy 247
 5.1 Targeted Delivery of Imaging Agents with Immunoliposomes 247
 5.2 Use of Immunoliposomes in Oncology 248
 5.3 Use of Immunoliposomes in Infectious Diseases 249
 5.4 Use of Immunoliposomes in Inflammation-Related Diseases 250
 5.5 Use of Immunoliposomes in Drug Delivery to the Brain 251
 5.6 Use of Immunoliposomes in Targeted Gene Delivery 251
6 Clinical Use of Immunoliposomes 251
7 Conclusions and Perspectives 252
References 253

CHAPTER 13 GENE THERAPY TARGETING KIDNEY DISEASES: ROUTES AND VEHICLES
Yoshitaka Isaka, Yoshitsugu Takabatake, and Hiromi Rakugi

1 Introduction 267
2 Rationale for Successful Gene Targeting 268
3 Site-Specific Gene Delivery 268
4 Nuclear Import of Gene Material 270
5 Targeting the Glomerulus 270
6 Targeting the Tubule 272
7 Targeting the Interstitium 274
8 Targeting Muscle 274
9 Conclusions 275
References 275

CHAPTER 14 DETECTION OF ANTIBODIES TO POLY(ETHYLENE GLYCOL) POLYMERS USING DOUBLE-ANTIGEN-BRIDGING IMMUNOGENICITY ELISA
Yijuan Liu, Helen Reidler, Jing Pan, David Milunic, Dujie Qin, Dave Chen, Yli Remo Vallejo, and Ray Yin

1 Introduction 279
2 Methods 280
 2.1 Materials 280
 2.2 ELISA Method Optimization 280
 2.3 ELISA Procedures 281
 2.4 Assay Reproducibility 282
 2.5 Drug Tolerance Testing and Free Drug Depletion Assays 282
CHAPTER 15
ANTIBODIES IN NANOMEDICINE AND MICROIMAGING
METHODS
Rakesh Sharma

1 Introduction: Antibody Molecules and Nanoparticles 291
2 Antibody-Based Nanoparticles in Microimaging 292
 2.1 21-T MR Microimaging 292
 2.2 Nanoparticles 293
 2.3 Preparation of Nanoparticle Composites in Microimaging 297
 2.4 Nanoparticle-Based Magnetic Resonance Microimaging 302
 2.5 Three-Dimensional Reconstruction 308
3 Troponin T: Newer Magnetic Immunoassay Method 317
 3.1 Troponins as Point-of-Care Detection of Acute Myocardial Infarction 317
 3.2 Use of a Penlike AMI Detectable Device 322
 3.3 MALDI Analysis of Troponin 328
 3.4 Limitations of Troponin Detection Methods 330
 3.5 Feasibility 330
4 Gold Nanoparticles as an Antigen Carrier and Adjuvant 330
 4.1 Hepten Antigens and Immune Response 330
 4.2 Adjuvant Properties of Gold Nanoparticles 332
 4.3 Immunomodulation by Colloidal Gold Nanoparticles 334
 4.4 Limitations of Gold Particle Methods 337
 4.5 Feasibility of Using Gold Particles 338
5 Immunochemical Biosensors, Nanomedicine, and Disease 339
 5.1 Nanobiosensors in Nanomedicine 339
 5.2 Antibodies in Nanorobots 339
6 Future Directions and Conclusions 341
References 341

CHAPTER 16
METHODS FOR POLYMERIC NANOPARTICLE CONJUGATION
TO MONOCLONAL ANTIBODIES
Uyen Minh Le, Hieu Tran, and Yashwant Pathak

1 Introduction 351
 1.1 Polymeric Nanoparticles 351
 1.2 Procedure for Conjugation of mAb to Polymeric Nanoparticles 351
2 Conjugation of mAb and Polyethyleneimine Nanoparticles 353
2.1 Using N-Succinimidyl-3-(2-pyridyldithio)propionate as a Cross-Linking Agent 354
2.2 Using N-Hydroxysuccinimide–PEG–vinylsulfone as a Cross-Linking Agent 354
2.3 Using Dithiobis(succinimidylpropionate) as a Cross-Linking Agent 356
2.4 Using Other Cross-Linking Agents 356
3 Conjugation of mAb to Poly(Lactide–CO–Glycolide) Nanoparticles 357
3.1 Using Cross-Linking of EDC and NHS 358
3.2 Using Other Cross-Linkers 359
4 Conjugation of mAb to Poly(Lactic Acid) and its Derivatives 359
5 Conjugation of mAb to Other Polymeric Nanoparticles 360
5.1 Poly(L-glutamic acid) 360
5.2 Poly(cyanoacrylate) 360
5.3 Chitosan 361
6 Summary 361
References 361

CHAPTER 17 PLANT-DERIVED ANTIBODIES FOR ACADEMIC, INDUSTRIAL, AND THERAPEUTIC APPLICATIONS
Slavko Komarnytsky and Nikolai Borisjuk 365

1 Historical Perspective 365
2 Plant-Based Production of Recombinant Proteins 366
3 Expression in an Entire Plant Versus a Plant Organ 367
4 ER Targeting and Secretion of Recombinant Proteins 368
5 Expression in Seeds 370
6 Transient Expression 371
7 Glycosylation 373
8 Recent Examples of Plant-Derived Antibodies Effective in Mammalian Systems 375
9 Conclusions 376
References 376

CHAPTER 18 MONOCLONAL ANTIBODIES AS BIOPHARMACEUTICALS
Girish J. Kotwal 383

1 Historical Perspective 383
2 Introduction 384
3 Structure and Types of mAbs 385
4 Mechanism of Action 385
5 FDA-approved mAb Biopharmaceuticals in Current Use 386
5.1 Allergy Treatment 386
5.2 Autoimmune Disease Treatment 386
5.3 Cancer Treatment 386
5.4 Cardiovascular Disease Treatment 387
5.5 Macular Degeneration Treatment 387
5.6 Paroxysmal Nocturnal Hemoglobinuria Treatment 387
5.7 Psoriasis Treatment 387
5.8 Respiratory Syncytial Virus Infection Treatment 387
5.9 Transplant Rejection Blockers 388
5.10 Bioprocessing Market Share of Monoclonal Antibodies 388
CHAPTER 19 PULMONARY TARGETING OF NANOPARTICLES AND MONOCLONAL ANTIBODIES

Weiyuan Chang

1 Introduction 391
 1.1 Brief History of Pulmonary Delivery 391
 1.2 Treatment and Diagnosis of Lung Diseases 391
2 Attributes of mAbs as Therapeutics for Pulmonary Diseases 392
3 Antibody-Conjugated Nanoparticles for Lung Targeting 393
4 Monoclonal Antibodies in the Treatment of Asthma 394
 4.1 Allergen-Specific T Cells and Their Cytokines 395
 4.2 IgE Levels and IgE Inhibitors 396
 4.3 TNFα Therapies in Asthma 397
5 Monoclonal Antibodies in the Treatment of COPD 398
 5.1 TNFα Therapies in COPD 399
6 Challenges in Pulmonary Disease 400
 6.1 Ability to Overcome Biological Barriers 401
 6.2 Nanoparticles to Increase the Systemic Bioavailability of Inhaled Macromolecules 401
 6.3 Inhalative Nanomedicine to Avoid Pulmonary Clearance 401
 6.4 Cellular Targeting with Advanced Inhalation Nanocarriers 402
7 Conclusions 402
References 403

CHAPTER 20 ANTIBODY-MEDIATED ARTHRITIS AND NEW THERAPEUTIC AVENUES

Kutty Selva Nandakumar

1 Autoantibodies in Rheumatoid Arthritis 407
2 Role of Cartilage Antigen-Specific Antibodies in Inducing Arthritis 408
3 Arthritis Mediation Through Antibodies Recognizing Citrullinated Antigens 413
4 Regulation at the Effector Level 414
5 Cartilage Damage Independent of Inflammatory Mediators 414
6 pathogenicity of Antibodies 415
7 Therapeutic Cleavage of Arthritogenic Antibodies 415
8 Arthritis Attenuation Though Removal of Specific Sugars on IgG 417
 References 418

CHAPTER 21 IMMUNONANOPARTICLES FOR NUCLEAR IMAGING AND RADIOTHERAPY

Oren Giladi and Simon Benita

1 Radioisotopes and Radiopharmaceuticals 427
 1.1 Radiotracers for Scintigraphy 427
 1.2 Therapeutic Radioisotopes 429
 1.3 Conventional Radiopharmaceuticals 431
2 Radiolabeled Antibodies 432
CONTENTS

2.1 Radiolabeled Immunoconjugate Biofate 433
2.2 mAb Radiolabeling Methods 434
2.3 Radioimmunoconjugates for Nuclear Imaging 435
2.4 Therapeutic Radiolabeled mAbs 436

3 Radiolabeled Nanoparticles 437
3.1 NP Types 437
3.2 Nanoparticulate Drug Delivery System Biofate 438
3.3 NP Radiolabeling 439
3.4 Passive Targeting of Radiolabeled NPs 440
3.5 Passive Targeting of Radiolabeled NPs for Imaging 440
3.6 Passive Targeting of Radiolabeled NPs for Radiotherapy 441
3.7 Targeted Radiolabeled NPs 442

4 Future Perspectives and Conclusions 449
References 450

CHAPTER 22 MONOCLONAL ANTIBODIES IN THE TREATMENT OF ASTHMA
Glenn J. Whelan 457

1 Introduction 457
2 IgE 458
 2.1 Omalizumab 458
3 TNFα 460
 3.1 Infliximab 461
4 IL-5 462
 4.1 Mepolizumab 462
 4.2 Reslizumab 463
 4.3 MEDI-563/Benralizumab 464
5 IL-9 464
 5.1 MEDI-528 464
6 IL-4 and IL-13 465
7 Targeting the T-cell 467
 7.1 Lumiliximab 467
 7.2 Daclizumab 468
8 Conclusions 468
References 469

INDEX 473