POLYPHARMACOLOGY IN DRUG DISCOVERY

Edited by

Jens-Uwe Peters
F. Hoffmann-La Roche Ltd. Basel, Switzerland
CONTRIBUTORS

PREFACE

Introduction: The Case for Polypharmacology
Andrew L. Hopkins

PART A POLYPHARMACOLOGY: A SAFETY CONCERN IN DRUG DISCOVERY

1. The Relevance of Off-Target Polypharmacology
 Bruce D. Car

2. Screening for Safety-Relevant Off-Target Activities
 Laszlo Urban, Steven Whitebread, Jacques Hamon, Dmitri Mikhailov, and Kamal Azzaoui
 2.1 Introduction
 2.2 General Aspects
 2.2.1 Rationale for Profiling Molecules for Potential Adverse Effects
 2.2.2 When to Profile or Screen for Safety?
 2.2.3 How Safety Profiling is Performed
 2.3 Selection of Off Targets
 2.3.1 Selection Criteria for Off Targets
 2.3.2 Hierarchical Profiling: Primary, Secondary, and Follow-up Testing
 2.3.3 Organ-Specific Panels
 2.3.4 Functional Considerations
 2.3.5 Pharmacological Promiscuity
 2.3.6 Validation with Marketed Drugs
 2.4 In Silico Approaches to (Off-Target) Profiling
 2.5 Summary and Conclusions
References
CONTENTS

3. **Pharmacological Promiscuity and Molecular Properties**

 Jens-Uwe Peters

 3.1 Introduction: Pharmacological Promiscuity in the History of Drug Discovery 47
 3.2 Lipophilicity 49
 3.3 Molecular Weight 52
 3.4 Ionization State 54
 3.5 Other Molecular Descriptors and Structural Motifs 57
 3.6 Implications for Drug Discovery 58
 References 59

4. **Kinases as Antitargets in Genotoxicity**

 Stephan Kirchner

 4.1 Protein Kinases and Inhibitor-Binding Sites 63
 4.2 Cyclin-Dependent Kinases Controlling Unregulated Cell Proliferation 68
 4.3 Mitotic Kinases as Guardians Protecting Cells from Aberrant Chromosome Segregation 73
 4.4 Conclusion 77
 References 78

5. **Activity at Cardiovascular Ion Channels: A Key Issue for Drug Discovery**

 Ian M. Bell, Mark T. Bilodeau, and Armando A. Lagrutta

 5.1 Introduction 83
 5.2 Screening Methods 88
 5.3 Structural Insights into the Interaction Between Drugs and Cardiovascular Ion Channels 89
 5.4 Medicinal Chemistry Approaches 94
 5.5 Conclusion 101
 References 101

6. **Prediction of Side Effects Based on Fingerprint Profiling and Data Mining**

 Jacques Migeon

 6.1 Introduction to BioPrint 111
 6.1.1 Compounds 111
 6.1.2 Assays 112
 6.2 The Pharmacological Fingerprint 113
 6.3 Antidepressant Example 115
 6.4 Profile Similarity at Nontherapeutic Targets 116
 6.5 Interpreting the Polypharmacology Profile 116
 6.5.1 Interpretation on a Hit-by-Hit Basis 116
 6.5.2 Analyzing the Entire Profile 117
PART B POLYPHARMACOLOGY: AN OPPORTUNITY FOR DRUG DISCOVERY

7. Polypharmacological Drugs: “Magic Shotguns” for Psychiatric Diseases
 Wesley K. Kroeze and Bryan L. Roth
 7.1 Introduction 135
 7.2 Definition 136
 7.3 Discovery and Extent of Promiscuity Among Psychiatric Drugs 136
 7.4 Why are So Many Psychiatric Drugs Promiscuous? 141
 7.4.1 Multiplicity and Similarity of Targets 141
 7.4.2 Other Factors 143
 7.5 Conclusions 146
 References 146

8. Polypharmacological Kinase Inhibitors: New Hopes for Cancer Therapy
 Annalisa Petrelli
 8.1 Targeted Therapies: A New Era in the Treatment of Cancer 149
 8.2 Single-Targeted Therapy 150
 8.2.1 Oncogene Addiction: A Rationale for Selective Therapies 150
 8.2.2 Disadvantages of Single Targeting: The Other Side of the Coin 152
 8.3 From Single- to Multitargeted Drugs in Cancer Therapy 153
 8.3.1 The Tumor–Stroma Connection 153
 8.3.2 Advantages of Multitargeting 155
 8.4 Polypharmacology Kinase Inhibitors in Clinical Practice and Under Development 156
 8.4.1 Sunitinib 157
 8.4.2 Sorafenib 158
 8.4.3 Pazopanib 158
 8.4.4 Axitinib 159
 8.4.5 Vandetanib 159

References
9. Polypharmacology as an Emerging Trend in Antibacterial Discovery

Lynn L. Silver

9.1 Introduction

9.1.1 Implications of the Benefit of Multitargeting on Antibacterial Discovery

9.1.2 Combinations

9.2 Classical Antibacterial Polypharmacology

9.2.1 β-Lactams

9.2.2 Fluoroquinolones

9.2.3 Cycloserine

9.2.4 Special Case: rRNA

9.3 New Approaches to Multitargeted Single Pharmacophores

9.3.1 Nonfluoroquinolone Dual Targeting of Gyrase and Topoisomerase IV

9.3.2 DNA Pol III C and E

9.3.3 Bacterial Fatty Acid Synthesis

9.3.3.1 Enoyl Reductases

9.3.3.2 Ketoacyl ACP Synthases

9.3.4 A Pterin Derivative as an Inhibitor of DHPS and DHFR

9.4 Synthetic Lethals

9.4.1 Ef-Tu: Duplicate Genes in Gram Negatives

9.4.2 Finding New Synthetic Lethals

9.5 Hybrid Molecules

9.6 Conclusions

References

10. A “Magic Shotgun” Perspective on Anticonvulsant Mechanisms

Matt T. Bianchi and Kathy Chuang

10.1 Introduction

10.2 Anticonvulsant Mechanism

10.3 Defining Promiscuity

10.4 Lessons for Promiscuity

10.4.1 Lessons from Endogenous Signaling

10.4.2 Lessons from Anticonvulsant Electrophysiology

10.5 Use of Anticonvulsants in Disorders other than Epilepsy

10.6 Experimental and Theoretical Support for a “Magic Shotgun” Approach

References
CONTENTS

10.7 Current Multitarget Strategies 217
10.8 Practical Considerations 218
10.9 Conclusion 220
References 220

11. Selective Optimization of Side Activities (SOSA):
A Promising Way for Drug Discovery 227

Thierry Langer and Camille-Georges Wermuth

11.1 Introduction 227
11.2 Definition and Principle 228
11.3 Rationale of SOSA 228
11.4 Establishing the SOSA Approach 228
11.5 A Successful Example of the SOSA Approach 229
11.6 Other Examples of SOSA Switches 231
 11.6.1 From Antidepressants to Fungicides 231
 11.6.2 Inhibition of Angiogenesis by the Antifungal Drug Itraconazole 231
 11.6.3 From H1-Histamine Antagonists to Antimalaria Agents 232
 11.6.4 Carprofen Cyclooxygenase-2 Inhibitors Yielding Alzheimer γ-Secretase Modulators 233
11.7 Discussion 233
 11.7.1 Safety and Bioavailability 234
 11.7.2 Patentability 234
 11.7.3 Originality 235
 11.7.4 Orphan Diseases 235
11.8 Computer-Assisted Design Using Pharmacophores 235
11.9 Conclusions 238
References 239

PART C SELECTED APPROACHES TO
POLYPHARMACOLOGICAL DRUG DISCOVERY

12. Selective Multitargeted Drugs 247

Richard Morphy

12.1 Introduction 247
12.2 Lead Generation 248
 12.2.1 Screening 248
 12.2.2 Framework Combination 249
12.3 Lead Optimization 250
12.4 Case Studies 252
 12.4.1 Schizophrenia 253
13. Computational Multitarget Drug Discovery

Jeremy A. Horst, Adrian Laurenzi, Brady Bernard, and Ram Samudrala

13.1 Introduction

13.2 The Pharmacological Hunt of Yesteryear
 13.2.1 Ethnopharmacy
 13.2.2 Protein Targets
 13.2.3 Hitting the Target
 13.2.3.1 Random Screens
 13.2.3.2 Directed Exploration
 13.2.4 Similar Active Substances for Rational Selection
 13.2.5 Cycling between Random and Directed Searches
 13.2.6 Screening in Current Pharma

13.3 Established Technological Advancements
 13.3.1 The Exploitable Niche
 13.3.2 Target Dissection for Inhibitor Design
 13.3.3 Rational Design and Optimization
 13.3.4 Multitarget Dosing

13.4 Computational Drug Discovery
 13.4.1 Principles and Data Sources
 13.4.2 Docking
 13.4.2.1 Translation
 13.4.2.2 Orientation
 13.4.2.3 Bond Rotation
 13.4.3 Scoring and Discriminatory Functions
 13.4.4 Relative Affinity Ranking
 13.4.5 Comparison of Docking Methods
 13.4.6 Ligand Comparison

13.5 More Recent Technical Improvements
 13.5.1 Automated Binding Site Identification
 13.5.2 Docking with Protein Target Dynamics
 13.5.3 Structure Modeling for Target Docking
 13.5.4 Ligand–Target Networks

13.6 Emerging Concepts
 13.6.1 Starting with Nature
 13.6.2 Peptides and Their Derivatives
 13.6.3 Off-Label Drug Use
 13.6.4 Off-Target Effects
CONTENTS

13.6.5 Affinity, Entropy, Enthalpy, and Optimization 285
13.6.6 False Hits 287
13.6.7 Finding Targets of Known Inhibition 287
13.6.8 Personalized Pharmacology 288
13.6.9 Open-Source Drug Discovery 289
13.6.10 Multitarget Design 290
13.6.11 Multidisease Screens and Reversing the Disease–Drug Search 291

13.7 Summary 292
References 293

14. Behavior-Based Screening as an Approach to Polypharmacological Ligands 303
Dani Brunner, Vadim Alexandrov, Barbara Caldarone, Taleen Hanania, David Lowe, Jeff Schneider, and Jayaraman Chandrasekhar

14.1 The Challenges of CNS Drug Discovery 303
14.2 In Vivo High-Throughput Screening 304
14.3 Screening Libraries of Compounds 304
14.4 Relationship between Molecular Properties and In Vivo CNS Activity 305
14.5 Following Screening Hits in Secondary Assays 309
14.6 Potential Therapeutic Value of Dual-Adenosine Compounds 310
14.7 Summary 311
References 312

15. Multicomponent Therapeutics 315
Alexis A. Borisy, Grant R. Zimmermann, and Joseph Lehár

15.1 Introduction 315
15.2 Why Drug Synergies are Statistically More Context-Dependent 316
15.3 How a Synergistic Mechanism Can Lead to Therapeutic Selectivity 318
15.4 Discussion 320
References 321

PART D CASE STUDIES

16. Discovery of Sunitinib as a Multitarget Treatment of Cancer 325
Catherine Delbaldo, Camelia Colichi, Marie-Paule Sablin, Chantal Dreyer, Bertrand Billemont, Sandrine Faivre, and Eric Raymond

16.1 A Brief Introduction to Tumor Angiogenesis 325
16.2 Discovery of Sunitinib from Drug Design to First Evidence of Clinical Activity 326
16.3 Pharmacology of Sunitinib 328
16.4 Safety of Sunitinib 329
16.5 Activity of Sunitinib 331
16.5.1 Gastrointestinal Stromal Tumors (GISTs) 332
16.5.2 Renal Cell Carcinoma (RCC) 332
16.5.3 Neuroendocrine Tumors 332
16.5.4 Hepatocellular Carcinoma (HCC) 333
16.6 Surrogate Imaging Techniques to Capture Vascular Changes 334
16.7 Surrogate Biomarkers 334
16.8 Conclusion 337
References 337

17. Antipsychotics 343
Claus Riemer

17.1 Definition and Diagnosis of Schizophrenia 343
17.2 Etiology and Pathophysiology of Schizophrenia 344
17.2.1 Dopamine 344
17.2.2 Serotonin 345
17.2.3 Glutamate 346
17.2.4 GABA 346
17.2.5 Acetylcholine 346
17.2.6 PDE10A 347
17.2.7 Tachykinins 347
17.3 Epidemiology 348
17.4 Medical Practice and Treatment Options 348
17.5 Case Studies 350
17.5.1 Typical Neuroleptics: Chlorpromazine and Its Structural Congeneric Phenothiazines 350
17.5.2 Atypical Neuroleptics 351
17.5.2.1 Clozapine 351
17.5.2.2 Olanzapine 353
17.5.2.3 Aripiprazole 354
17.6 CATIE 356
17.7 Conclusions 358
References 359

18. Triple-Uptake Inhibitors (Broad-Spectrum Antidepressants) 363
Phil Skolnick

18.1 Introduction 363
18.2 The Rationale for Developing Triple-Uptake Inhibitors as Antidepressants 365
18.3 Preclinical Data 366
18.4 Clinical Data 373
18.5 Concluding Remarks 377
References 377
19. Therapeutic Potential of Small Molecules Modulating the Cyclooxygenase-5-Lipoxygenase Pathway 383
Wolfgang Albrecht and Stefan Laufer

19.1 Introduction 383
19.2 Targets of the Eicosanoid Pathway 384
19.3 Rationale for Development of Dual Inhibitors of the Cyclooxygenase-5-Lipoxygenase Pathway 389
 19.3.1 Gastrointestinal Tolerability 389
 19.3.2 Disease-Modifying Effect 389
 19.3.3 Cancer 390
19.4 Dual Inhibitors of the Cyclooxygenase-5-Lipoxygenase Pathway 391
19.5 Development of Licofelone 394
19.6 Conclusions 400
References 401

20. Drug Research Leading to Imatinib and Beyond to Nilotinib 409
Paul W. Manley and Jürg Zimmermann

20.1 Introduction 409
20.2 Background 409
20.3 BCR-ABL1 as the Molecular Target for CML Therapy 411
20.4 Conclusion 419
References 419

21. Towards Antimalarial Hybrid Drugs 423
Bernard Meunier

21.1 Introduction 423
21.2 The History of Malaria Treatment 423
21.3 Use of Artemisinin and Its Derivatives 424
21.4 The Search for Hybrid Antimalarials 426
 21.4.1 Synthesis and Biological Properties 426
 21.4.2 The Hybrid Molecule Concept 430
21.5 Conclusion 432
References 433

22. Multitargeted Drugs for Treatment of Alzheimer’s Disease 441
Andrea Cavalli and Maria Laura Bolognesi

22.1 Introduction 441
22.2 Case studies 445
 22.2.1 Dimebon 446
 22.2.2 Ladostigil 448
 22.2.3 Memoquin 449
22.3 Conclusions and Perspectives 452
References 454

Claudiu T. Supuran

23.1 Introduction 459
23.2 Carbonic Anhydrase Inhibition 462
23.3 Topiramate and Zonisamide, Antiepileptics with Potent Antiobesity Action 467
23.4 Sulfonamide Coxibs with Antitumor Activity Due to CA IX/XII Inhibition 473
23.5 Sulfamates with Steroid Sulfatase and Carbonic Anhydrase Inhibitory Action as Anticancer Agents in Clinical Development 475
23.6 Lacosamide, an Antiepileptic with a Strange Binding Mode to CA Isoforms 478
23.7 The Protein Tyrosine Kinase Inhibitors Imatinib and Nilotinib as Strong Inhibitors of Several Mammalian CA Isoforms 481
23.8 Conclusions 484
References 485

INDEX 493