Chitosan-Based Systems for Biopharmaceuticals

Delivery, Targeting and Polymer Therapeutics

Edited by

BRUNO SARMENTO

Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal

and

CICS, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde–Norte, Gandra, Portugal

JOSÉ DAS NEVES

Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
Contents

List of Contributors xvi
Foreword xxiii
Maria José Alonso
Preface xxv
Acknowledgments xxvii

Part One General Aspects of Chitosan 1

1 Chemical and Technological Advances in Chitins and Chitosans Useful for the Formulation of Biopharmaceuticals 3
 Riccardo A. A. Muzzarelli

 1.1 Introduction 3
 1.2 Safety of Chitins and Chitosans 4
 1.3 Ionic Liquids: New Solvents and Reaction Media 5
 1.4 Chitin and Chitosan Nanofibrils 8
 1.4.1 Mechanically Isolated Nanofibrils in the Presence of Acetic Acid 8
 1.4.2 Nanochitosan Obtained from Partially Deacetylated Chitin or Deacetylated Nanochitin 9
 1.5 Electrospun Nanofibers 10
 1.6 Polyelectrolyte Complexes and Mucoadhesion 12
 1.6.1 Chitosan Polyelectrolyte Complexes Soluble in Alkaline Medium 14
 1.6.2 Polyelectrolyte Complexes of Regioselectively Oxidized Chitin 15
 1.6.3 Polyelectrolyte Complexes of Chitosan with Bacterial Cell Wall Components 15
 1.7 Conclusions and Future Perspectives 16
 Acknowledgments 16
 References 16

2 Physical Properties of Chitosan and Derivatives in Sol and Gel States 23
 Marguerite Rinaudo

 2.1 Introduction 23
 2.2 Chitin 24
 2.2.1 Solid State of Chitin 24
 2.2.2 Solubility of Chitin 24
 2.2.3 Characterization of Chitin 26
 2.2.4 Processing of Chitin Solution and Physical Properties of Materials 28
 2.3 Chitosan 28
 2.3.1 Solubility of Chitosan 28
 2.3.2 Characterization of Chitosan 29
2.3.3 Processing of Chitosan-Based Materials 31
2.3.4 Complex Materials Based on Interacting Chitosan and Chitosan Derivatives 31
2.4 Conclusions and Future Perspectives 36
References 36

3 Absorption Promotion Properties of Chitosan and Derivatives 45
Akira Yamamoto

3.1 Introduction 45
3.2 Effect of Chitosan on the Intestinal Absorption of Poorly Absorbable Drugs 47
3.3 Effect of Chitosan Derivatives on the Intestinal Absorption of Poorly Absorbable Drugs 47
3.4 Effect of Chitosan Oligomers on the Intestinal Absorption of Poorly Absorbable Drugs 48
3.5 Colon-Specific Delivery of Insulin Using Chitosan Capsules 51
3.6 Conclusions and Future Perspectives 54
References 54

4 Biocompatibility and Biodegradation of Chitosan and Derivatives 57
Ahmad Sukari Halim, Lim Chin Keong, Ismail Zainol, and Ahmad Hazri Abdul Rashid

4.1 Introduction 57
4.2 Biocompatibility Evaluation of Chitosan and Derivatives 58
4.2.1 In Vitro Biocompatibility 60
4.2.2 In Vivo Biocompatibility 63
4.2.3 Effect of Sterilization on Biocompatibility 64
4.3 Biodegradation of Chitosan and Derivatives 65
4.3.1 Factors Influencing the Biodegradation of Chitosan and Derivatives 67
4.3.2 In Vitro Biodegradation of Chitosan and Derivatives 68
4.3.3 In Vivo Biodegradation of Chitosan and Derivatives 69
4.4 Conclusions and Future Perspectives 69
References 70

5 Biological and Pharmacological Activity of Chitosan and Derivatives 75
Teresa Cunha, Branca Teixeira, Bárbara Santos, Marlene Almeida, Gustavo Dias, and José das Neves

5.1 Introduction 75
5.2 Biological Activity 76
5.2.1 Antimicrobial Activity 76
5.2.2 Immune Effects and Anti-Inflammatory Activity 77
5.2.3 Antioxidant Activity 78
5.2.4 Anticancer Activity 79
5.2.5 Blood Coagulation Effects 79
5.2.6 Antidiabetic Activity 80
5.2.7 Neuroprotective Activity 80
5.2.8 Other Biological Activities 81
5.3 Chitosan’s Usefulness in Therapy and Alternative Medicine 82
5.3.1 Wound Healing 82
5.3.2 Obesity 82
Part Two Biopharmaceuticals Formulation and Delivery Aspects Using Chitosan and Derivatives

8 Use of Chitosan and Derivatives in Conventional Biopharmaceutical Dosage Forms Formulation
Teófilo Vasconcelos, Pedro Barrocas, and Rui Cerdeira

8.1 Introduction
8.2 Advantageous Properties of Chitosan and Its Derivatives
8.3 Oral Administration
8.4 Buccal Administration
8.5 Nasal Administration
8.6 Pulmonary Administration
8.7 Transdermal Administration
8.8 Conclusions and Future Perspectives
References

9 Manufacture Techniques of Chitosan-Based Microparticles and Nanoparticles for Biopharmaceuticals
Franca Ferrari, M. Cristina Bonferoni, Silvia Rossi, Giuseppina Sandri, and Carla M. Caramella

9.1 Introduction
9.2 Water-in-Oil Emulsion and Chemical Cross-linking
9.3 Drying Techniques
9.3.1 Spray Drying
9.3.2 Supercritical Fluid Drying
9.3.3 Electrospraying
9.4 Ionic Cross-linking Methods
9.4.1 Low-MW Molecules
9.4.2 Macromolecules
9.5 Coacervation and Precipitation Method
9.6 Direct Interaction between Chitosan and Biopharmaceuticals
9.6.1 DNA–Chitosan Interaction
9.6.2 siRNA–Chitosan Interaction
9.7 Conclusions and Future Perspectives
References

10 Chitosan and Derivatives for Biopharmaceutical Use: Mucoadhesive Properties
Katharina Leithner and Andreas Bernkop-Schnürch

10.1 Introduction
10.2 Mucoadhesion
10.2.1 The Mucus
10.2.2 The Interaction of Mucoadhesives and Mucosa
10.2.3 Mucoadhesion
10.2.4 Chitosan as a Mucoadhesive Polymer
10.3 Chitosan and Its Derivatives
References
Contents

10.3.1 Overview

10.3.2 Thiolated Chitosan

10.3.3 Chitosan–EDTA and Chitosan–DTPA

10.3.4 Trimethyl Chitosan

10.3.5 Mono-\textit{N}-Carboxymethyl Chitosan

10.3.6 \textit{N}-Sulfonato-\textit{N},\textit{O}-Carboxymethylchitosan

10.3.7 Hydrophobically Modified Chitosans

10.3.8 PEGylated Chitosan

10.3.9 Chitosan–Succinate and Chitosan–Phthalate

10.4 Biopharmaceutical Use of Chitosan and Its Derivatives

10.4.1 Overview

10.4.2 Oral Drug Delivery

10.4.3 Nasal Drug Delivery

10.4.4 Buccal Drug Delivery

10.5 Conclusions and Future Perspectives

References

11 Chitosan-Based Systems for Mucosal Delivery of Biopharmaceuticals

\textit{Sonia Al-Qadi, Ana Grenha, and Carmen Remuñán-López}

11.1 Introduction

11.2 Important Challenges for the Delivery of Biopharmaceuticals by Mucosal Routes

11.3 Interest in Chitosan for Mucosal Delivery of Biopharmaceuticals

11.3.1 Chitosan Physicochemical Properties

11.3.2 Biological Properties of Chitosan

11.3.3 Mucoadhesive and Permeation-Enhancing Properties

11.3.4 Chitosan Derivatives

11.4 Chitosan-Based Delivery Nanosystems for Mucosal Delivery of Biopharmaceuticals

11.4.1 Oral Delivery of Biopharmaceuticals

11.4.2 Nasal Delivery of Biopharmaceuticals

11.4.3 Pulmonary Delivery of Biopharmaceuticals

11.5 Conclusions and Future Perspectives

Acknowledgments

References

12 Chitosan-Based Delivery Systems for Mucosal Vaccination

\textit{Gerrit Borchard, Farnaz Esmaeili, and Simon Heuking}

12.1 Introduction

12.2 Adjuvant Properties of Chitosan

12.3 Chitosan in the Delivery of Protein and Subunit Vaccines

12.4 Chitosan-Based Formulations of DNA Vaccines

12.5 Vaccine Formulations Using Chitosan in Combination with Other Polymers

12.6 Chitosan Derivatives in Vaccine Carrier Design

12.6.1 \textit{N},\textit{N},\textit{N}-Trimethyl Chitosan

12.6.2 Nasal Delivery of TMC-Based Vaccine Formulations

12.6.3 Pulmonary Delivery of TMC-Based Vaccine Formulations
15.5.4 PAMAM Dendron 269
15.6 Conclusions and Future Perspectives 269
Acknowledgment 269
References 269

Part Three Advanced Application of Chitosan and Derivatives for Biopharmaceuticals 275

16 Target-Specific Chitosan-Based Nanoparticle Systems for Nucleic Acid Delivery 277
Shardool Jain and Mansoor Amiji

<table>
<thead>
<tr>
<th>16.1 Introduction</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1.1 Nanotechnology in Vaccine and Drug Delivery</td>
<td>277</td>
</tr>
<tr>
<td>16.1.2 Chitosan: A Versatile Biopolymer</td>
<td>278</td>
</tr>
<tr>
<td>16.1.3 Chitosan for Delivery of Nucleic Acid Vaccines and Therapies</td>
<td>279</td>
</tr>
<tr>
<td>16.1.4 Passive versus Active Systemic Targeted Delivery</td>
<td>280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.2 Chitosan-Based Nanoparticle Delivery Systems</th>
<th>283</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2.1 Chitosan-Based Nanodelivery Systems for DNA Vaccines</td>
<td>283</td>
</tr>
<tr>
<td>16.2.2 Chitosan-Based Nanodelivery Systems for Nucleic Acid Therapy</td>
<td>285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.3 Illustrative Examples of DNA Vaccine Delivery</th>
<th>286</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.1 Mucosal Vaccination</td>
<td>286</td>
</tr>
<tr>
<td>16.3.2 Systemic Vaccination</td>
<td>287</td>
</tr>
</tbody>
</table>

16.4 Illustrative Examples of Nucleic Acid Delivery Systems for Cancer Therapy	288
16.5 Illustrative Examples of Nucleic Acid Delivery Systems for Anti-Inflammatory Therapy	291
16.6 Conclusions and Future Perspectives	294
References 295

17 Functional PEGylated Chitosan Systems for Biopharmaceuticals 301
Hee-Jeong Cho, Goen Kim, Hyeok-Seung Kwon, and Yu-Kyoung Oh

<table>
<thead>
<tr>
<th>17.1 Introduction</th>
<th>301</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1.1 Physicochemical Properties of PEGylated Chitosan</td>
<td>302</td>
</tr>
<tr>
<td>17.1.2 Biological Properties of PEGylated Chitosan</td>
<td>303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17.2 PEGylated Chitosan for the Delivery of Proteins and Peptides</th>
<th>304</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.1 Protein Delivery</td>
<td>304</td>
</tr>
<tr>
<td>17.2.2 Peptide Delivery</td>
<td>307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17.3 PEGylated Chitosan for Delivery of Nucleic Acids</th>
<th>308</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.1 Plasmid DNA Delivery</td>
<td>308</td>
</tr>
<tr>
<td>17.3.2 Oligonucleotide Delivery</td>
<td>310</td>
</tr>
</tbody>
</table>

17.4 PEGylated Chitosan for Delivery of Other Macromolecular Biopharmaceuticals	311
17.5 PEGylated Chitosan Used for Cellular Scaffolds	313
17.6 Conclusions and Future Perspectives	314
References 314

18 Stimuli-Sensitive Chitosan-Based Systems for Biopharmaceuticals 319
Cuiping Zhai, Jinfang Yuan, and Qingyu Gao

<table>
<thead>
<tr>
<th>18.1 Introduction</th>
<th>319</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2 pH-Sensitive Chitosan-Based Systems</td>
<td>319</td>
</tr>
</tbody>
</table>
18.3 Thermosensitive Chitosan-Based Systems
18.4 pH-Sensitive and Thermosensitive Chitosan-Based Systems
18.5 pH- and Ionic-Sensitive Chitosan-Based Systems
18.6 Photo-Sensitive Chitosan-Based Systems
18.7 Electrical-Sensitive Chitosan-Based Systems
18.8 Magnetic-Sensitive Chitosan-Based Systems
18.9 Chemical Substance-Sensitive Chitosan-Based Systems
18.10 Conclusions and Future Perspectives

References

19 Chitosan Copolymers for Biopharmaceuticals

Ramon Novoa-Carballal, Ricardo Riguera, and Eduardo Fernandez-Megia

19.1 Introduction
19.1.1 General Copolymerization Methods
19.1.2 Chitosan Copolymers for Biopharmaceuticals
19.1.3 The Integrity of the Chitosan Chain in Chitosan Copolymers

19.2 Chitosan-g-Poly(Ethylene Glycol)
19.2.1 Synthetic Procedures towards the Preparation of Chitosan-g-Poly(Ethylene Glycol)
19.2.2 Applications of Chitosan-g-Poly(Ethylene Glycol) with Biopharmaceuticals

19.3 Chitosan-g-Polyethylenimine
19.3.1 Synthetic Strategies toward the Preparation of Chitosan-g-Polyethylenimine
19.3.2 Applications to Gene Therapy

19.4 Other Copolymers of Chitosan
19.4.1 Chitosan-g-Polypeptide
19.4.2 Grafting of Chitosan to Thermoresponsive Polymers
19.4.3 Chitosan-g-Methacrylates

19.5 Copolymers of Chitosan with Promising Applications
19.5.1 Chitosan-g-Polyesters
19.5.2 Chitosan-g-Polysaccharides
19.5.3 Block Copolymers of Chitosan
19.5.4 Chitosan-g-Dendrimer

19.6 Conclusions and Future Perspectives

References

20 Application of Chitosan for Anticancer Biopharmaceutical Delivery

Claudia Philippi, Brigitta Loretz, Ulrich F. Schaefer, and Claus-Michael Lehr

20.1 Introduction

20.2 Chitosan and Cancer: Intrinsic Antitumor Activity of the Polymer Itself
20.2.1 Effects of Chitosan, Low-Molecular Weight Chitosan, and Chitooligosaccharides
20.2.2 Effects of Chitosan Nanoparticles

20.3 Chitosan Formulations Developed for Classic Anticancer Drugs
20.3.1 Chemically Modified Chitosans or Chitosan–Drug Conjugates
20.3.2 Nanoparticulate Carrier Systems
20.3.3 Chitosans as Absorption Enhancers

References
20.4 Biopharmaceuticals Delivered by Chitosan Preparations
 20.4.1 Nucleic Acid–Based Therapeutics 384
 20.4.2 Peptide-Based Actives for Cancer Treatment 387
20.5 Active Targeting Strategies and Multifunctional Chitosan Formulations 388
 20.5.1 Active Targeting Strategies 388
 20.5.2 Multifunctional Chitosan Nanoparticles 389
20.6 Conclusions and Future Perspectives 389
References 390

21 Chitosan-Based Biopharmaceutical Scaffolds in Tissue Engineering
and Regenerative Medicine 393
Tao Jiang, Meng Deng, Wafa I. Abdel- Fattah, and Cato T. Laurencin

21.1 Introduction 393
21.2 Fabrication of Chitosan-Based Biopharmaceuticals Scaffolds 395
 21.2.1 Techniques for Fabricating Chitosan-Based Scaffolds 395
 21.2.2 Functionalization of Chitosan-Based Scaffolds via Biopharmaceuticals 402
21.3 Applications of Chitosan-Based Biopharmaceutical Scaffolds
 in Tissue Engineering and Regenerative Medicine 403
 21.3.1 Regeneration of Soft Tissue 404
 21.3.2 Regeneration of Hard Tissue 410
21.4 Future Trends: Regenerative Engineering 416
21.5 Conclusions and Future Perspectives 417
Acknowledgments 417
References 418

22 Wound-Healing Properties of Chitosan and Its Use in Wound Dressing
Biopharmaceuticals 429
Tyler G. St. Denis, Tianhong Dai, Ying-Ying Huang, and Michael R. Hamblin

22.1 Introduction 429
22.2 Brief Review of Wound Repair 430
 22.2.1 Inflammatory Phase 430
 22.2.2 Proliferative Phase 431
 22.2.3 Remodeling Phase 432
22.3 Wound-Healing Effects of Chitosan 433
 22.3.1 In Vitro Studies 433
 22.3.2 In Vivo Studies 435
 22.3.3 Clinical Studies 438
22.4 Chitosan for Wound Therapeutics Delivery 440
 22.4.1 Antimicrobials 440
 22.4.2 Combination with Photodynamic Therapy 442
 22.4.3 Growth Factors 443
 22.4.4 Delivery of Other Drugs 444
22.5 Conclusions and Future Perspectives 444
Acknowledgments 447
References 447
23 Toxicological Properties of Chitosan and Derivatives for Biopharmaceutical Applications

Thomas J. Kean and Maya Thanou

23.1 Introduction

23.2 In Vitro Toxicity of Chitosan and Derivatives

23.2.1 In Vitro Toxicity of Chitosan

23.2.2 In Vitro Toxicity of Chitosan Derivatives

23.2.3 In Vitro Toxicity of Chitosan Formulations

23.2.4 Antibacterial, Antifungal, and Antiparasitic Activities of Chitosan and Chitosan Derivatives

23.3 In Vivo Toxicity of Chitosan and Derivatives

23.3.1 In Vivo Toxicity of Chitosan

23.3.2 In Vivo Toxicity of Chitosan Derivatives

23.3.3 In Vivo Toxicity of Chitosan Formulations

23.4 Conclusions and Future Perspectives

References

24 Regulatory Status of Chitosan and Derivatives

Michael Dornish, David S. Kaplan, and Sambasiva R. Arepalli

24.1 Introduction

24.2 Source

24.3 Characterization

24.4 Purity

24.4.1 Impurities

24.4.2 Heavy Metals

24.4.3 Protein

24.4.4 Microbiological Bioburden

24.4.5 Bacterial Endotoxin

24.5 Applications of Advanced Uses of Chitosan

24.5.1 Tissue Engineering

24.5.2 Gene Delivery with Chitosan

24.5.3 Nasal Drug and Vaccine Delivery

24.6 Regulatory Considerations for Chitosan and Chitosan Derivatives in the European Union, and Medical Devices or Combination Products with Medical Device (CDRH) Lead

24.6.1 The US Food and Drug Administration

24.7 Regulatory Pathways

24.8 Chitosan Medical Products: US Regulatory Review Processes for Medical Devices or Combination Products with CDRH Lead

24.9 Chitosan Wound Dressings

24.9.1 Hemostasis and Antimicrobial Activities

24.10 The European Regulatory System: The European Medicines Agency (EMA) and European Directorate for the Quality of Medicines (EDQM)

24.10.1 Pharmaceuticals – Europe

24.10.2 Medical Devices – Europe
24.11 Further Regulatory Considerations
24.11.1 Generally Recognized as Safe (GRAS) 476
24.11.2 Pharmacopoeia Monographs 476
24.11.3 Standards Development Organizations 476
24.12 Conclusions and Future Perspectives 477
Acknowledgments 478
24.13 Disclaimer 478
References 478

25 Patentability and Intellectual Property Issues Related to Chitosan-Based Biopharmaceutical Products 483
Mafalda Videira and Rogério Gaspar
25.1 Introduction 483
25.2 Setting the Scene: The Role of Chitosan as a Pharmaceutical Excipient 484
25.2.1 Current Achievements in Chitosan Use 484
25.2.2 Chitosan-Based Ocular Therapy 486
25.2.3 Tissue Engineering and Wound Management 487
25.2.4 Drug Delivery Systems: Emerging Targeting Solutions 488
25.2.5 Recent Trends in Using Chitosan 494
25.3 Addressing the Drivers for Scientific Progress on Chitosan: Innovation and Inventability 495
25.3.1 Is There a Next Generation of Chitosan? 495
25.4 Conclusions and Future Perspectives 496
References 497

26 Quality Control and Good Manufacturing Practice (GMP) for Chitosan-Based Biopharmaceutical Products 503
Torsten Richter, Maika Gulich, and Katja Richter
List of Abbreviations 503
26.1 Introduction 504
26.2 Regulatory Requirements for Production 505
26.2.1 Medical Devices 505
26.2.2 Excipients 506
26.2.3 APIs/Pharmaceuticals 507
26.3 Manufacturing GMP: Fundamental Considerations 508
26.4 Requirements for Rooms, Personnel, and Equipment 511
26.5 Qualification and Validation 511
26.5.1 Qualification 511
26.5.2 Process Validation 513
26.6 Quality Control 513
26.6.1 Specific Features of Chitosan Quality Control 516
26.7 Monitoring and Maintenance of a GMP System 519
26.7.1 Vendor and Customer Audits 519
26.7.2 Public Authority Inspections 521
26.8 Conclusions and Future Perspectives 522
References 522
27 Preclinical and Clinical Use of Chitosan and Derivatives for Biopharmaceuticals: From Preclinical Research to the Bedside

David A. Zaharoff, Michael Heffernan, Jonathan Fallon, and John W. Greiner

27.1 Introduction

27.2 Chitosan as a Parenteral (Subcutaneous) Vaccine Platform
 27.2.1 Enhancement of Humoral and Cell-Mediated Immune Responses
 27.2.2 Enhancement of the Immunoadjuvant Properties of GM-CSF

27.3 Chitosan as an Immunotherapeutic Platform
 27.3.1 Intratumoral Immunotherapy with Chitosan–IL-12
 27.3.2 Intravesical Immunotherapy of Superficial Bladder Carcinoma with Chitosan–IL-12

27.4 Conclusions and Future Perspectives

References

Index