Neglected Diseases and Drug Discovery

Edited by

Michael J. Palmer
Pfizer, Sandwich, Kent, UK

Timothy N. C. Wells
Medicines for Malaria Venture, Geneva, Switzerland

RSC Publishing
2.1.3 Pharmacokinetic Properties 37
2.1.4 Toxicity 38
2.1.5 Potential Drug Resistance 38

2.2 Investigational Semisynthetic Artemisinins and Synthetic Peroxides 39
2.2.1 Introduction 39
2.2.2 Artelnic Acid 39
2.2.3 Artemisone 40
2.2.4 Arteflene 43
2.2.5 Fenozan B07 46
2.2.6 Arterolane 48
2.2.7 PA1103/SAR116242 51
2.2.8 RKA182 54

2.3 Conclusions 56
2.4 Abbreviations 56
Acknowledgements 56
References 56

Chapter 3 Antimalarial Agents Targeting Nucleotide Synthesis and Electron Transport: Insight from Structural Biology 65
Margaret A. Phillips

3.1 Introduction 65
3.2 Electron Transport – the bc1 Complex 68
 3.2.1 Atovaquone and Mechanism of Resistance to bc1 Inhibitors 68
 3.2.2 Next-generation bc1 Complex Inhibitors 70
3.3 Pyrimidine Nucleoside and Nucleotide Metabolism 72
 3.3.1 Dihydrofolate Reductase (DHFR) – Therapeutically used Inhibitors and Structural Basis of Resistance 72
 3.3.2 Structure-based Design of Next-generation DHFR Inhibitors 74
 3.3.3 Other Targets in Pyrimidine and Folate Metabolism 76
3.4 De novo Pyrimidine Biosynthesis 76
 3.4.1 Dihydroorotate Dehydrogenase (DHODH) as a New Drug Target 76
 3.4.2 Identification of Novel Inhibitors: Triazolopyrimidines 77
 3.4.3 Insights from X-ray Structural Analysis of DHODH Bound to Inhibitors 78
3.5 Purine Salvage Enzymes 79
 3.5.1 Purine Nucleoside Phosphorylase 80
 3.5.2 Other Purine Salvage Enzymes 82
Chapter 4 Human Targets Repositioning and Cell-based Approaches for Antimalarial Discovery
Arnab K. Chatterjee and Elizabeth A. Winzeler

4.1 Introduction 88
4.2 Human Targets Classes as a Source for Antimalarials 89
 4.2.1 Farnesyltransferase Inhibitors 89
 4.2.2 HDAC Inhibitors 92
 4.2.3 Kinase Inhibitors 94
 4.2.4 Protease Inhibitors 97
 4.2.5 Folate Biosynthesis 100
 4.2.6 Future Perspectives on Target-based Discovery using Novel Hit-finding Methods 101
4.3 Phenotypic Drug Discovery 102
 4.3.1 Overview of Cell-based Assays and Drug Discovery 102
 4.3.2 Lab-evolved Resistance and Genome-scanning for Target Discovery 104
4.4 Conclusions 106
References 107

Chapter 5 The Medicinal Chemistry of Eradication: Hitting the Lifecycle where it Hurts. Approaches to Blocking Transmission
Jeremy Nicholas Burrows and Robert Edward Sinden

5.1 Introduction 112
5.2 Features of Plasmodium Biology Relevant to Drug Design 113
5.3 Status of Current Biological Assays and Future Needs 115
 5.3.1 Pre-erythrocytic (Liver-stage) Assays 115
 5.3.2 Asexual Blood-stage (Schizonticide) Assays 116
 5.3.3 Mature Gametocyte (Gametocytocide) Assays 116
 5.3.4 Mosquito-stage Assays (Gametogenesis; Ookinete and Oocyst Formation) 117
5.4 Clinical Aspects of Transmission-blocking Approaches 118
 5.4.1 Development of Transmission-blocking Drugs 120
Chapter 6 Drugs for Kinetoplastid Diseases – Current Situation and Challenges

Simon L. Croft

6.1 Introduction 134
6.2 Leishmaniasis 135
 6.2.1 Visceral Leishmaniasis 136
 6.2.2 HIV/Leishmaniasis Co-Infections 141
 6.2.3 Cutaneous Leishmaniasis (CL) 142
6.3 Human African Trypanosomiasis 145
6.4 South American Trypanosomiasis (Chagas Disease) 150
6.5 Conclusions 152
References 153

Chapter 7 Drug Discovery for Kinetoplastid Diseases

Robert T. Jacobs

7.1 Introduction 159
7.2 Background Biology and Genetics 160
7.3 Identification of Parasiticidal Compounds through Whole-cell Assays 160
 7.3.1 Benzoxaboroles 160
 7.3.2 Lipophilic Amines 161
 7.3.3 Nitroheterocycles 162
 7.3.4 Metal-based Parasiticides 163
7.4 Polyamine Pathway 164
 7.4.1 Ornithine Decarboxylase (ODC) 165
 7.4.2 S-Adenosylmethionine Decarboxylase (SAM-DC, AdoMet-DC) 166
 7.4.3 Spermidine Synthase (SpdSyn) 167
 7.4.4 Trypanothione Synthetase (TrpSyn) 167
 7.4.5 Trypanothione Reductase (TrpRed) 168
7.5 Energy Metabolism 168
 7.5.1 Hexokinase (HK) 169
 7.5.2 Phosphoglucone Isomerase (PGI) and Phosphofructokinase (PFK) 169
Table of Contents

Chapter 14: Current Approaches to Tuberculosis Drug Discovery and Development

- 9.1 The Global Problem of Tuberculosis and Current State of Affairs
- 9.2 Host Targets Required for Viral Replication
- 9.3 Host Targets Involved in Disease Exacerbation
- 9.4 Cell-based Screening and Optimization
- 9.5 Conclusions
- References
9.2 The Preclinical Path to Developing New Agents 231
9.3 In Vitro Assays 235
 9.3.1 Minimum Inhibitory Concentration
 Susceptibility Testing 235
 9.3.2 Models for Assessing Activity Against
 Non-replicating Bacteria 236
 9.3.3 Wayne Model of Oxygen Depletion 237
 9.3.4 Loebel Model of Nutrient Depletion 238
 9.3.5 Additional In Vitro Models 238
9.4 Mammalian Cell-based In Vitro and Ex Vivo Assays 238
 9.4.1 Intracellular Infection Models 238
 9.4.2 Macrophage Assays 239
 9.4.3 Whole Blood Bactericidal Assay 239
9.5 Resistance Profiling 240
9.6 In Vitro PK-PD Hollow Fiber Systems 240
9.7 In Vivo Infection Models 242
 9.7.1 Murine Models 242
 9.7.2 Other In Vivo Species 248
9.8 Clinical Testing of Novel Therapies for TB 250
 9.8.1 Phase 1 Trials 250
 9.8.2 Phase 2a trials: Early Bactericidal Activity 251
 9.8.3 Phase 2b Trials 252
9.9 Conclusions 252
Acknowledgement 253
References 253

Chapter 10 Diarrhoeal Diseases 262

David Brown 262

10.1 Disease Burden 262
 10.1.1 Morbidity and Mortality Rates 262
 10.1.2 Geography of Diarrhoeal Diseases 263
 10.1.3 Pathogenic Organisms Causing Diarrhoeal Diseases 265
10.2 Prevention of Diarrhoeal Diseases 266
 10.2.1 Hygiene, Sanitation and Public Health Policy 266
 10.2.2 Breast-feeding and Micro-nutrient Supplementation 267
 10.2.3 Vaccines 267
10.3 Treatment of Diarrhoeal Diseases 269
 10.3.1 WHO Treatment Guidelines Summary 269
 10.3.2 Oral Rehydration Salts 270
 10.3.3 Zinc 271
 10.3.4 Antibiotics 272
 10.3.5 Anti protozoals 275
12.1.3 HIV-1 Structure and Variability 325
12.1.4 Pathogenesis and Clinical Manifestations of HIV Infection 325

12.2 HIV-1 Replication and Development of Antiretroviral Drugs 328
12.2.1 HIV-1 Entry and Inhibitors of Virus Entry 329
12.2.2 Reverse Transcription and Reverse Transcriptase Inhibitors 334
12.2.3 Integration of Proviral DNA and Integrase Inhibitors 338
12.2.4 Production and Maturation of Progeny Virions and Inhibitors of Viral Protease 339
12.2.5 Ongoing Challenges – Managing Adverse Effects and Drug Resistance 340

12.3 Current State of the Art in the Management of HIV-1 Infection 343
12.3.1 Management of HIV Infection in Paediatric Patients 345
12.3.2 Prevention of Mother to Child Transmission 345

12.4 Universal Access to Antiretroviral Drugs – What are the Challenges? 346
12.4.1 Key Challenges for HIV Treatment in the Developing World 347
12.4.2 Optimisation of Antiretroviral Drugs for Developing Countries 348

12.5 Antiretroviral Drugs and Prevention of HIV-1 Infection – Future Directions 349
12.5.1 Pre-exposure Prophylaxis Using Oral Antiretroviral Therapy 350
12.5.2 Microbicides 350
12.5.3 Potential of Large Scale Treatment Programmes to Reduce Transmission 352

12.6 HIV Vaccine Development – Progress and Challenges 352
12.6.1 Requirements for Vaccine-induced Immune Responses 353
12.6.2 Candidate Vaccine Approaches 353
12.6.3 Progress to Date 354

12.7 Conclusions 355
References 356
Chapter 13 Drug Discovery for Lower Respiratory Tract Infections

J Carl Craft

13.1 Introduction 366
 13.1.1 The Economics of Antibiotics: Getting a Return on Investment 367
 13.1.2 Regulatory Uncertainty for Antibiotic Trials 368

13.2 Lower Respiratory Tract Infections Indications 369
 13.2.1 Community-acquired Pneumonia 369
 13.2.2 Hospital-acquired (Nosocomial) Pneumonia 370
 13.2.3 Aspiration Pneumonia 371
 13.2.4 Chronic Lung Infections: Abscess, Empyema, Bronchiectasis 372
 13.2.5 Acute Bronchitis 372
 13.2.6 Chronic Bronchitis Including Acute Bacterial Exacerbations of Chronic Bronchitis 372

13.3 Anti-infective Drug Research and Development 373
 13.3.1 Classes of Antibiotics Important in Lower Respiratory Tract Infections 373
 13.3.2 Target-based Synthetic Antimicrobials Important to Lower Respiratory Tract Infections 389
 13.3.3 Antifungals 393
 13.3.4 Antivirals 394
 13.3.5 Emerging Classes of Potential Antimicrobials 397

13.4 Affordable Medicines for Lower Respiratory Tract Infections in the Least Developed Countries 398

13.5 Conclusions 401

References 401

Subject Index 412