ADME-ENABLING TECHNOLOGIES IN DRUG DESIGN AND DEVELOPMENT

EDITED BY

DONGLU ZHANG
SEKHAR SURAPANENI
CONTENTS

FOREWORD xxii
Lisa A. Shipley

PREFACE xxv
Donglu Zhang and Sekhar Surapaneni

CONTRIBUTORS xxvii

PART A ADME: OVERVIEW AND CURRENT TOPICS 1

1 Regulatory Drug Disposition and NDA Package Including MIST 3
Sekhar Surapaneni

1.1 Introduction 3
1.2 Nonclinical Overview 5
1.3 PK 5
1.4 Absorption 5
1.5 Distribution 6
 1.5.1 Plasma Protein Binding 6
 1.5.2 Tissue Distribution 6
 1.5.3 Lacteal and Placental Distribution Studies 7
1.6 Metabolism 7
 1.6.1 In vitro Metabolism Studies 7
 1.6.2 Drug–Drug Interaction Studies 8
 1.6.3 In vivo Metabolism (ADME) Studies 10
1.7 Excretion 11
1.8 Impact of Metabolism Information on Labeling 11
1.9 Conclusions 12
References 12

2 Optimal ADME Properties for Clinical Candidate and Investigational New Drug (IND) Package 15
Rajinder Bhardwaj and Gamin Chandrasena

2.1 Introduction 15
2.2 NCE and Investigational New Drug (IND) Package 16
CONTENTS

2.3 ADME Optimization 17
 2.3.1 Absorption 18
 2.3.2 Metabolism 20
 2.3.3 PK 22
2.4 ADME Optimization for CNS Drugs 23
2.5 Summary 24
References 25

3 Drug Transporters in Drug Interactions and Disposition 29
 Imad Hanna and Ryan M. Pelis
 3.1 Introduction 29
 3.2 ABC Transporters 31
 3.2.1 Pgp (MDR1, ABCB1) 31
 3.2.2 BCRP (ABCG2) 32
 3.2.3 MRP2 (ABCC2) 32
 3.3 SLC Transporters 33
 3.3.1 OCT1 (SLC22A1) and OCT2 (SLC22A2) 34
 3.3.2 MATE1 (SLC47A1) and MATE2K (SLC47A2) 35
 3.3.3 OAT1 (SLC22A6) and OAT3 (SLC22A8) 36
 3.3.4 OATP1B1 (SLCO1B1, SLC21A6), OATP1B3 (SLCO1B3, SLC21A8), and OATP2B1 (SLCO2B1, SLC21A9) 37
 3.4 In vitro Assays in Drug Development 39
 3.4.1 Considerations for Assessing Candidate Drugs as Inhibitors 39
 3.4.2 Considerations for Assessing Candidate Drugs as Substrates 39
 3.4.3 Assay Systems 40
 3.5 Conclusions and Perspectives 45
References 46

4 Pharmacological and Toxicological Activity of Drug Metabolites 55
 W. Griffith Humphreys
 4.1 Introduction 55
 4.2 Assessment of Potential for Active Metabolites 56
 4.2.1 Detection of Active Metabolites during Drug Discovery 58
 4.2.2 Methods for Assessing and Evaluating the Biological Activity of Metabolite Mixtures 58
 4.2.3 Methods for Generation of Metabolites 59
 4.3 Assessment of the Potential Toxicology of Metabolites 59
 4.3.1 Methods to Study the Formation of Reactive Metabolites 60
 4.3.2 Reactive Metabolite Studies: In vitro 61
 4.3.3 Reactive Metabolite Studies: In vivo 61
 4.3.4 Reactive Metabolite Data Interpretation 61
 4.3.5 Metabolite Contribution to Off-Target Toxicities 62
 4.4 Safety Testing of Drug Metabolites 62
 4.5 Summary 63
References 63

5 Improving the Pharmaceutical Properties of Biologics in Drug Discovery: Unique Challenges and Enabling Solutions 67
 Jiwen Chen and Ashok Dongre
 5.1 Introduction 67
 5.2 Pharmacokinetics 68
 5.3 Metabolism and Disposition 70
6 Clinical Dose Estimation Using Pharmacokinetic/Pharmacodynamic Modeling and Simulation 79

Lingling Guan

6.1 Introduction 79
6.2 Biomarkers in PK and PD 80
6.2.1 PK 80
6.2.2 PD 81
6.2.3 Biomarkers 81
6.3 Model-Based Clinical Drug Development 83
6.3.1 Modeling 83
6.3.2 Simulation 84
6.3.3 Population Modeling 85
6.3.4 Quantitative Pharmacology (QP) and Pharmacometrics 85
6.4 First-in-Human Dose 86
6.4.1 Drug Classification Systems as Tools for Development 86
6.4.2 Interspecies and Allometric Scaling 87
6.4.3 Animal Species, Plasma Protein Binding, and in vivo-in vitro Correlation 88
6.5 Examples 89
6.5.1 First-in-Human Dose 89
6.5.2 Pediatric Dose 90
6.6 Discussion and Conclusion 90
References 93

7 Pharmacogenomics and Individualized Medicine 95

Anthony Y.H. Lu and Qiang Ma

7.1 Introduction 95
7.2 Individual Variability in Drug Therapy 95
7.3 We Are All Human Variants 96
7.4 Origins of Individual Variability in Drug Therapy 96
7.5 Genetic Polymorphism of Drug Targets 97
7.6 Genetic Polymorphism of Cytochrome P450s 98
7.7 Genetic Polymorphism of Other Drug Metabolizing Enzymes 100
7.8 Genetic Polymorphism of Transporters 100
7.9 Pharmacogenomics and Drug Safety 101
7.10 Warfarin Pharmacogenomics: A Model for Individualized Medicine 102
7.11 Can Individualized Drug Therapy Be Achieved? 104
7.12 Conclusions 104
Disclaimer 105
Contact Information 105
References 105

8 Overview of Drug Metabolism and Pharmacokinetics with Applications in Drug Discovery and Development in China 109

Chang-Xiao Liu

8.1 Introduction 109
8.2 PK–PD Translation Research in New Drug Research and Development 109
8.3 Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME/T) Studies in Drug Discovery and Early Stage of Development 110
8.4 Drug Transporters in New Drug Research and Development 111
8.5 Drug Metabolism and PK Studies for New Drug Research and Development 113
 8.5.1 Technical Guidelines for PK Studies in China 113
 8.5.2 Studies on New Molecular Entity (NME) Drugs 114
 8.5.3 PK Calculation Program 117
8.6 Studies on the PK of Biotechnological Products 117
8.7 Studies on the PK of TCMs 118
 8.7.1 The Challenge in Research of TCMs 118
 8.7.2 New Concept on PK Markers 120
 8.7.3 Identification of Nontarget Components from Herbal Preparations 122
8.8 PK and Bioavailability of Nanomaterials 123
 8.8.1 Research and Development of Nanopharmaceuticals 123
 8.8.2 Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials 123
 8.8.3 Biodistribution and Biodegradation 123
 8.8.4 Doxorubicin Polyethylene Glycol-Phosphatidylethanolamine (PEG-PE) Nanoparticles 124
 8.8.5 Micelle-Encapsulated Alprostadil (M-Alp) 124
 8.8.6 Paclitaxel Magnetoliposomes 125
References 125

PART B ADME SYSTEMS AND METHODS 129

9 Technical Challenges and Recent Advances of Implementing Comprehensive ADMET Tools in Drug Discovery 131
 Jianling Wang and Leslie Bell

 9.1 Introduction 131
 9.2 “A” Is the First Physiological Barrier That a Drug Faces 131
 9.2.1 Solubility and Dissolution 131
 9.2.2 GI Permeability and Transporters 136
 9.3 “M” Is Frequently Considered Prior to Distribution Due to the “First-Pass” Effect 139
 9.3.1 Hepatic Metabolism 139
 9.3.2 CYPs and Drug Metabolism 140
 9.4 “D” Is Critical for Correctly Interpreting PK Data 142
 9.4.1 Blood/Plasma Impact on Drug Distribution 142
 9.4.2 Plasma Stability 143
 9.4.3 PPB 144
 9.4.4 Blood/Plasma Partitioning 144
 9.5 “E”: The Elimination of Drugs Should Not Be Ignored 145
 9.6 Metabolism- or Transporter-Related Safety Concerns 146
 9.7 Reversible CYP Inhibition 147
 9.7.1 In vitro CYP Inhibition 147
9.7.2 Human Liver Microsomes (HLM) + Prototypical Probe Substrates with Quantification by LC-MS 147
9.7.3 Implementation Strategy 149
9.8 Mechanism-Based (Time-Dependent) CYP Inhibition 149
9.8.1 Characteristics of CYP3A TDI 150
9.8.2 \textit{In vitro} Screening for CYP3A TDI 150
9.8.3 Inactivation Rate (k_{ob}) 150
9.8.4 IC$_{50}$-Shift 151
9.8.5 Implementation Strategy 152
9.9 CYP Induction 152
9.10 Reactive Metabolites 153
9.10.1 Qualitative \textit{in vitro} Assays 153
9.10.2 Quantitative \textit{in vitro} Assay 154
9.11 Conclusion and Outlook 154
Acknowledgments 155
References 155

10 Permeability and Transporter Models in Drug Discovery and Development 161
Praveen V. Balimane, Yong-Hae Han, and Saeho Chong
10.1 Introduction 161
10.2 Permeability Models 162
10.2.1 PAMPA 162
10.2.2 Cell Models (Caco-2 Cells) 162
10.2.3 P-glycoprotein (Pgp) Models 162
10.3 Transporter Models 163
10.3.1 Intact Cells 164
10.3.2 Transfected Cells 165
10.3.3 \textit{Xenopus} Oocyte 165
10.3.4 Membrane Vesicles 165
10.3.5 Transgenic Animal Models 166
10.4 Integrated Permeability–Transporter Screening Strategy 166
References 167

11 Methods for Assessing Blood–Brain Barrier Penetration in Drug Discovery 169
Li Di and Edward H. Kerns
11.1 Introduction 169
11.2 Common Methods for Assessing BBB Penetration 170
11.3 Methods for Determination of Free Drug Concentration in the Brain 170
11.3.1 \textit{In vivo} Brain PK in Combination with \textit{in vitro} Brain Homogenate Binding Studies 171
11.3.2 Use of CSF Drug Concentration as a Surrogate for Free Drug Concentration in the Brain 171
11.4 Methods for BBB Permeability 172
11.4.1 \textit{In situ} Brain Perfusion Assay 172
11.4.2 High-throughput PAMPA-BBB 173
11.4.3 Lipophilicity (LogD$_{7.4}$) 173
11.5 Methods for Pgp Efflux Transport 173
11.6 Conclusions 174
References 174
14.3 HLM Reversible CYP Inhibition Assay Using Individual Substrates
14.3.1 Choice of Substrate and Specific Inhibitors
14.3.2 Optimization of Incubation Conditions
14.3.3 Incubation Procedures
14.3.4 LC-MS/MS Analysis
14.3.5 Data Calculation
14.4 HLM Assay Using Multiple Substrates (Cocktail Assays)
14.4.1 Choice of Substrate and Specific Inhibitors
14.4.2 Optimization of Incubations
14.4.3 Incubation Procedures
14.4.4 LC-MS/MS Analysis
14.4.5 Data Calculation
14.5 Time-Dependent CYP Inhibition Assay
14.5.1 Shift Assay
14.5.2 Measurements
14.5.3 Data Calculation
14.6 Summary and Future Directions

References

15 Tools and Strategies for the Assessment of Enzyme Induction in Drug Discovery and Development
Adrian J. Fretland, Anshul Gupta, Peijuan Zhu, and Catherine L. Booth-Genthe

15.1 Introduction
15.2 Understanding Induction at the Gene Regulation Level
15.3 In silico Approaches
15.3.1 Model-Based Drug Design
15.3.2 Computational Models
15.4 In vitro Approaches
15.4.1 Ligand Binding Assays
15.4.2 Reporter Gene Assays
15.5 In vitro Hepatocyte and Hepatocyte-Like Models
15.5.1 Hepatocyte Cell-Based Assays
15.5.2 Hepatocyte-Like Cell-Based Assays
15.6 Experimental Techniques for the Assessment of Induction in Cell-Based Assays
15.6.1 mRNA Quantification
15.6.2 Protein Quantification
15.6.3 Assessment of Enzyme Activity
15.7 Modeling and Simulation and Assessment of Risk
15.8 Analysis of Induction in Preclinical Species
15.9 Additional Considerations
15.10 Conclusion

References

16 Animal Models for Studying Drug Metabolizing Enzymes and Transporters
Kevin L. Salyers and Yang Xu

16.1 Introduction
16.2 Animal Models of DMEs
16.2.1 Section Objectives
16.2.2 In vivo Models to Study the Roles of DMEs in Determining Oral Bioavailability
CONTENTS

19.2 Sample Preparation 302
19.3 Chromatography Separation 302
19.4 Mass Spectrometric Analysis 304
19.5 Ionization 304
19.6 MS Mode versus MS/MS or MS^n Mode 305
19.7 Mass Spectrometers: Single and Triple Quadrupole Mass Spectrometers 306
19.8 Mass Spectrometers: Three-Dimensional and Linear Ion Traps 308
19.10 Mass Spectrometers: Fourier Transform and Orbitrap Mass Spectrometers 309
19.11 Role of LC-MS in Quantitative in vitro ADME Studies 309
19.12 Quantitative in vivo ADME Studies 311
19.13 Metabolite Identification 312
19.14 Tissue Imaging by MS 313
19.15 Conclusions and Future Directions 313
References 314

20 Application of Accurate Mass Spectrometry for Metabolite Identification 317
Zhoupeng Zhang and Kaushik Mitra

20.1 Introduction 317
20.2 High-Resolution/Accurate Mass Spectrometers 317
20.2.1 Linear Trap Quadrupole-Orbitrap (LTQ-Orbitrap) Mass Spectrometer 318
20.2.2 Q-tof and Triple Time-of-Flight (TOF) 318
20.2.3 Hybrid Ion Trap Time-of-Flight Mass Spectrometer (IT-tof) 318
20.3 Postacquisition Data Processing 318
20.3.1 MDF 319
20.3.2 Background Subtraction Software 319
20.4 Utilities of High-Resolution/Accurate Mass Spectrometry (HRMS) in Metabolite Identification 320
20.4.1 Fast Metabolite Identification of Metabolically Unstable Compounds 320
20.4.2 Identification of Unusual Metabolites 322
20.4.3 Identification of Trapped Adducts of Reactive Metabolites 325
20.4.4 Analysis of Major Circulating Metabolites of Clinical Samples of Unlabeled Compounds 327
20.4.5 Applications in Metabolomics 328
20.5 Conclusion 328
References 329

21 Applications of Accelerator Mass Spectrometry (AMS) 331
Xiaomin Wang, Voon Ong, and Mark Seymour

21.1 Introduction 331
21.2 Bioanalytical Methodology 332
21.2.1 Sample Preparation 332
21.2.2 AMS Instrumentation 332
21.2.3 AMS Analysis 333
21.3 AMS Applications in Mass Balance/Metabolite Profiling 334
21.4 AMS Applications in Pharmacokinetics 335
21.5 Conclusion 337
References 337

22 Radioactivity Profiling 339
Wing Wah Lam, Jose Silva, and Heng-Keang Lim
22.1 Introduction 339
22.2 Radioactivity Detection Methods 340
 22.2.1 Conventional Technologies 340
 22.2.2 Recent Technologies 341
22.3 AMS 346
22.4 Intracavity Optogalvanic Spectroscopy 349
22.5 Summary 349
Acknowledgments 349
References 349

23 A Robust Methodology for Rapid Structure Determination of
Microgram-Level Drug Metabolites by NMR Spectroscopy 353
Kim A. Johnson, Stella Huang, and Yue-Zhong Shu
23.1 Introduction 353
23.2 Methods 354
 23.2.1 Liver Microsome Incubations of Trazodone 354
 23.2.2 HPLC and Metabolite Purification 354
 23.2.3 HPLC-MS/MS 355
 23.2.4 NMR 355
23.3 Trazodone and Its Metabolism 355
23.4 Trazodone Metabolite Generation and NMR Sample
 Preparation 356
23.5 Metabolite Characterization 356
23.6 Comparison with Flow Probe and LC-NMR Methods 361
23.7 Metabolite Quantification by NMR 361
23.8 Conclusion 361
References 362

24 Supercritical Fluid Chromatography 363
Jun Dai, Yingru Zhang, David B. Wang-Iverson, and Adrienne A. Tymiak
24.1 Introduction 363
24.2 Background 363
24.3 SFC Instrumentation and General Considerations 364
 24.3.1 Detectors Used in SFC 365
 24.3.2 Mobile Phases Used in SFC 366
 24.3.3 Stationary Phases Used in SFC 367
 24.3.4 Comparison of SFC with Other
 Chromatographic Techniques 367
 24.3.5 Selectivity in SFC 368
24.4 SFC in Drug Discovery and Development 369
 24.4.1 SFC Applications for Pharmaceuticals and
 Biomolecules 370
 24.4.2 SFC Chiral Separations 372
 24.4.3 SFC Applications for High-Throughput Analysis 374
 24.4.4 Preparative Separations 375
24.5 Future Perspective 375
References 376
25 Chromatographic Separation Methods

Wenyong Jian, Richard W. Edom, Zhongping (John) Lin, and Naidong Weng

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1 Introduction</td>
<td>381</td>
</tr>
<tr>
<td>25.1.1 A Historical Perspective</td>
<td>381</td>
</tr>
<tr>
<td>25.1.2 The Need for Separation in ADME Studies</td>
<td>381</td>
</tr>
<tr>
<td>25.1.3 Challenges for Current Chromatographic Techniques in Support of ADME Studies</td>
<td>382</td>
</tr>
<tr>
<td>25.2 LC Separation Techniques</td>
<td>383</td>
</tr>
<tr>
<td>25.2.1 Basic Practical Principles of LC Separation Relevant to ADME Studies</td>
<td>383</td>
</tr>
<tr>
<td>25.2.2 Major Modes of LC Frequently Used for ADME Studies</td>
<td>385</td>
</tr>
<tr>
<td>25.2.3 Chiral LC</td>
<td>387</td>
</tr>
<tr>
<td>25.3 Sample Preparation Techniques</td>
<td>388</td>
</tr>
<tr>
<td>25.3.1 Off-Line Sample Preparation</td>
<td>388</td>
</tr>
<tr>
<td>25.3.2 Online Sample Preparation</td>
<td>389</td>
</tr>
<tr>
<td>25.3.3 Dried Blood Spots (DBS)</td>
<td>390</td>
</tr>
<tr>
<td>25.4 High-Speed LC-MS Analysis</td>
<td>390</td>
</tr>
<tr>
<td>25.4.1 UHPLC</td>
<td>390</td>
</tr>
<tr>
<td>25.4.2 Monolithic Columns</td>
<td>391</td>
</tr>
<tr>
<td>25.4.3 Fused-Core Silica Columns</td>
<td>392</td>
</tr>
<tr>
<td>25.4.4 Fast Separation Using HILIC</td>
<td>393</td>
</tr>
<tr>
<td>25.5 Orthogonal Separation</td>
<td>394</td>
</tr>
<tr>
<td>25.5.1 Orthogonal Sample Preparation and Chromatography</td>
<td>394</td>
</tr>
<tr>
<td>25.5.2 2D-LC</td>
<td>395</td>
</tr>
<tr>
<td>25.6 Conclusions and Perspectives</td>
<td>395</td>
</tr>
<tr>
<td>References</td>
<td>396</td>
</tr>
</tbody>
</table>

26 Mass Spectrometric Imaging for Drug Distribution in Tissues

Daniel P. Magparangalan, Timothy J. Garrett, Dieter M. Drexler, and Richard A. Yost

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1 Introduction</td>
<td>401</td>
</tr>
<tr>
<td>26.1.1 Imaging Techniques for ADMET Studies</td>
<td>401</td>
</tr>
<tr>
<td>26.1.2 Mass Spectrometric Imaging (MSI) Background</td>
<td>401</td>
</tr>
<tr>
<td>26.2 MSI Instrumentation</td>
<td>403</td>
</tr>
<tr>
<td>26.2.1 Microprobe Ionization Sources</td>
<td>403</td>
</tr>
<tr>
<td>26.2.2 Mass Analyzers</td>
<td>404</td>
</tr>
<tr>
<td>26.3 MSI Workflow</td>
<td>406</td>
</tr>
<tr>
<td>26.3.1 Postdissection Tissue/Organ Preparation and Storage</td>
<td>406</td>
</tr>
<tr>
<td>26.3.2 Tissue Sectioning and Mounting</td>
<td>406</td>
</tr>
<tr>
<td>26.3.3 Tissue Section Preparation, MALDI Matrix Selection, and Deposition</td>
<td>407</td>
</tr>
<tr>
<td>26.3.4 Spatial Resolution: Relationship between Laser Spot Size and Raster Step Size</td>
<td>407</td>
</tr>
<tr>
<td>26.4 Applications of MSI for in situ ADMET Tissue Studies</td>
<td>408</td>
</tr>
<tr>
<td>26.4.1 Determination of Drug Distribution and Site of Action</td>
<td>408</td>
</tr>
<tr>
<td>26.4.2 Analysis of Whole-Body Tissue Sections Utilizing MSI</td>
<td>409</td>
</tr>
<tr>
<td>26.4.3 Increasing Analyte Specificity for Mass Spectrometric Images</td>
<td>411</td>
</tr>
<tr>
<td>26.4.4 DESI Applications for MSI</td>
<td>412</td>
</tr>
<tr>
<td>26.5 Conclusions</td>
<td>413</td>
</tr>
<tr>
<td>References</td>
<td>414</td>
</tr>
</tbody>
</table>
27 Applications of Quantitative Whole-Body Autoradiography (QWBA) in Drug Discovery and Development 419
Lifei Wang, Haizheng Hong, and Donglu Zhang

27.1 Introduction 419
27.2 Equipment and Materials 419
27.3 Study Designs
 27.3.1 Choice of Radiolabel 420
 27.3.2 Choice of Animals 420
 27.3.3 Dose Selection, Formulation, and Administration 420
27.4 QWBA Experimental Procedures 420
 27.4.1 Embedding 420
 27.4.2 Whole-Body Sectioning 421
 27.4.3 Whole-Body Imaging 421
 27.4.4 Quantification of Radioactivity Concentration 421
27.5 Applications of QWBA 421
 27.5.1 Case Study 1: Drug Delivery to Pharmacology Targets 421
 27.5.2 Case Study 2: Tissue Distribution and Metabolite Profiling 422
 27.5.3 Case Study 3: Tissue Distribution and Protein Covalent Binding 424
 27.5.4 Case Study 4: Rat Tissue Distribution and Human Dosimetry Calculation 425
 27.5.5 Case Study 5: Placenta Transfer and Tissue Distribution in Pregnant Rats 430
27.6 Limitations of QWBA 432
References 433

PART D NEW AND RELATED TECHNOLOGIES 435

28 Genetically Modified Mouse Models in ADME Studies 437
Xi-Ling Jiang and Ai-Ming Yu

28.1 Introduction 437
28.2 Drug Metabolizing Enzyme Genetically Modified Mouse Models
 28.2.1 CYP1A1/CYP1A2 438
 28.2.2 CYP2A6/Cyp2a5 438
 28.2.3 CYP2C19 439
 28.2.4 CYP2D6 439
 28.2.5 CYP2E1 440
 28.2.6 CYP3A4 440
 28.2.7 Cytochrome P450 Reductase (CPR) 441
 28.2.8 Glutathione S-Transferase pi (GSTP) 441
 28.2.9 Sulfotransferase 1E1 (SULT1E1) 442
 28.2.10 Uridine 5'-Diphospho-Glucuronosyltransferase 1 (UGT1) 442
28.3 Drug Transporter Genetically Modified Mouse Models
 28.3.1 P-Glycoprotein (Pgp/MDR1/ABCB1) 442
 28.3.2 Multidrug Resistance-Associated Proteins (MRP/ABCC) 442
 28.3.3 Breast Cancer Resistance Protein (BCRP/ABCG2) 444
 28.3.4 Bile Salt Export Pump (BSEP/ABCB11) 444
 28.3.5 Peptide Transporter 2 (PEPT2/SLC15A2) 444
 28.3.6 Organic Cation Transporters (OCT/SLC22A) 445
28.3.7 Multidrug and Toxin Extrusion 1 (MATE1/SLC47A1) 445
28.3.8 Organic Anion Transporters (OAT/SLC22A) 445
28.3.9 Organic Anion Transporting Polypeptides (OATP/SLCO) 445
28.3.10 Organic Solute Transporter α (OSTα) 446

28.4 Xenobiotic Receptor Genetically Modified Mouse Models 446
28.4.1 Aryl Hydrocarbon Receptor (AHR) 446
28.4.2 Pregnane X Receptor (PXR/NR1I2) 446
28.4.3 Constitutive Androstane Receptor (CAR/NR1I3) 446
28.4.4 Peroxisome Proliferator-Activated Receptor α (PPARα/NR1C1) 447
28.4.5 Retinoid X Receptor α (RXRα/NR2B1) 447

28.5 Conclusions 448
References 448

29 Pluripotent Stem Cell Models in Human Drug Development 455
David C. Hay

29.1 Introduction 455
29.2 Human Drug Metabolism and Compound Attrition 455
29.3 Human Hepatocyte Supply 456
29.4 hESCs 456
29.5 hESC HLC Differentiation 456
29.6 iPSCs 456
29.7 CYP P450 Expression in Stem Cell-Derived HLCs 457
29.8 Tissue Culture Microenvironment 457
29.9 Culture Definition for Deriving HLCs from Stem Cells 457
29.10 Conclusion 457
References 458

30 Radiosynthesis for ADME Studies 461
Brad D. Maxwell and Charles S. Elmore

30.1 Background and General Requirements 461
30.1.1 Food and Drug Administration (FDA) Guidance 461
30.1.2 Third Clinical Study after Single Ascending Dose (SAD) and Multiple Ascending Dose (MAD) Studies 462
30.1.3 Formation of the ADME Team 462
30.1.4 Human Dosimetry Projection 462
30.1.5 cGMP Synthesis Conditions 462
30.1.6 Formation of One Covalent Bond 462

30.2 Radiosynthesis Strategies and Goals 463
30.2.1 Determination of the Most Suitable Radioisotope for the Human ADME Study 463
30.2.2 Synthesize the API with the Radiolabel in the Most Metabolically Stable Position 463
30.2.3 Incorporate the Radiolabel as Late in the Synthesis as Possible 465
30.2.4 Use the Radiolabeled Reagent as the Limiting Reagent 465
30.2.5 Consider Alternative Labeled Reagents and Strategies 466
30.2.6 Develop One-Pot Reactions and Minimize the Number of Purification Steps 467
30.2.7 Safety Considerations 467

30.3 Preparation and Synthesis 467
30.3.1 Designated cGMP-Like Area 467
30.3.2 Cleaning 467
30.3.3 Glassware 468
30.3.4 Equipment and Calibration of Analytical Instruments 468
30.3.5 Reagents and Substrates 468
30.3.6 Practice Reactions 468
30.3.7 Actual Radiolabel Synthesis 468

30.4 Analysis and Product Release 469
30.4.1 Validated HPLC Analysis 469
30.4.2 Orthogonal HPLC Method 469
30.4.3 Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis 469
30.4.4 Proton and Carbon-13 NMR 469
30.4.5 Determination of the SA of the High Specific Activity API 469
30.4.6 Mixing of the High Specific Activity API with Unlabeled Clinical-Grade API 470
30.4.7 Determination of the SA of the Low Specific Activity API 470
30.4.8 Other Potential Analyses 470
30.4.9 Establishment of Use Date and Use Date Extensions 470
30.4.10 Analysis and Release of the Radiolabeled Drug Product 471

30.5 Documentation 471
30.5.1 QA Oversight 471
30.5.2 TSE and BSE Assessment 471

30.6 Summary 471
References 471

31 Formulation Development for Preclinical in vivo Studies 473
Yuan-Hon Kiang, Darren L. Reid, and Janan Jona

31.1 Introduction 473
31.2 Formulation Consideration for the Intravenous Route 473
31.3 Formulation Consideration for the Oral, Subcutaneous, and Intraperitoneal Routes 474
31.4 Special Consideration for the Intraperitoneal Route 475
31.5 Solubility Enhancement 475
31.6 pH Manipulation 476
31.7 Cosolvents Utilization 477
31.8 Complexation 479
31.9 Amorphous Form Approach 479
31.10 Improving the Dissolution Rate 479
31.11 Formulation for Toxicology Studies 479
31.12 Timing and Assessment of Physicochemical Properties 480
31.13 Critical Issues with Solubility and Stability 481
31.13.1 Solubility 481
31.13.2 Chemical Stability Assessment 481
31.13.3 Monitoring of the Physical and Chemical Stability 482
31.14 General and Quick Approach for Formulation Identification at the Early Discovery Stages 482

References 482

32 In vitro Testing of Proarrhythmic Toxicity 485
Haoyu Zeng and Jiesheng Kang

32.1 Objectives, Rationale, and Regulatory Compliance 485
32.2 Study System and Design 486
32.2.1 The Gold Standard Manual Patch Clamp System 486
32.2.2 Semiautomated System 487
32.2.3 Automated System 487
32.2.4 Comparison between Isolated Cardiomyocytes and Stably Transfected Cell Lines 489
32.3 Good Laboratory Practice (GLP)-hERG Study 489
32.4 Medium-Throughput Assays Using PatchXpress as a Case Study 490
32.5 Nonfunctional and Functional Assays for hERG Trafficking 491
32.6 Conclusions and the Path Forward 491
References 492

33 Target Engagement for PK/PD Modeling and Translational Imaging Biomarkers 493
Vanessa N. Barth, Elizabeth M. Joshi, and Matthew D. Silva

33.1 Introduction 493
33.2 Application of LC-MS/MS to Assess Target Engagement 494
33.2.1 Advantages and Disadvantages of Technology and Study Designs 494
33.3 LC-MS/MS-Based RO Study Designs and Their Calculations 494
33.3.1 Sample Analysis 496
33.3.2 Comparison and Validation versus Traditional Approaches 497
33.4 Leveraging Target Engagement Data for Drug Discovery from an Absorption, Distribution, Metabolism, and Excretion (ADME) Perspective 497
33.4.1 Drug Exposure Measurement 497
33.4.2 Protein Binding and Unbound Concentrations 498
33.4.3 Metabolism and Active Metabolites 500
33.5 Application of LC-MS/MS to Discovery Novel Tracers 502
33.5.1 Characterization of the Dopamine D2 PET Tracer Raclopride by LC-MS/MS 502
33.5.2 Discovery of Novel Tracers 503
33.6 Noninvasive Translational Imaging 503
33.7 Conclusions and the Path Forward 507
References 508

34 Applications of iRNA Technologies in Drug Transporters and Drug Metabolizing Enzymes 513
Mingxiang Liao and Cindy Q. Xia

34.1 Introduction 513
34.2 Experimental Designs 514
34.2.1 siRNA Design 514
34.2.2 Methods for siRNA Production 515
34.2.3 Controls and Delivery Methods Selection 517
34.2.4 Gene Silencing Effects Detection 520
34.2.5 Challenges in siRNA 524
34.3 Applications of RNAi in Drug Metabolizing Enzymes and Transporters 527
34.3.1 Applications of Silencing Drug Transporters 527
34.3.2 Applications of Silencing Drug Metabolizing Enzymes 534
34.3.3 Applications of Silencing Nuclear Receptors (NRs) 534
34.3.4 Applications in in vivo 535
Appendix Drug Metabolizing Enzymes and Biotransformation Reactions

Natalia Penner, Caroline Woodward, and Chandra Prakash

A.1 Introduction

A.2 Oxidative Enzymes
A.2.1 P450
A.2.2 FMOs
A.2.3 MAOs
A.2.4 Molybdenum Hydroxylases (AO and XO)
A.2.5 ADHs
A.2.6 ALDHs

A.3 Reductive Enzymes
A.3.1 AKRs
A.3.2 AZRs and NTRs
A.3.3 QRs
A.3.4 ADH, P450, and NADPH-P450 Reductase

A.4 Hydrolytic Enzymes
A.4.1 Epoxide Hydrolases (EHs)
A.4.2 Esterases and Amidases

A.5 Conjugative (Phase II) DMEs
A.5.1 UGTs
A.5.2 SULTs
A.5.3 Methyltransferases (MTs)
A.5.4 NATs
A.5.5 GSTs
A.5.6 Amino Acid Conjugation

A.6 Factors Affecting DME Activities
A.6.1 Species and Gender
A.6.2 Polymorphism of DMEs
A.6.3 Comedication and Diet

A.7 Biotransformation Reactions
A.7.1 Oxidation
A.7.2 Reduction
A.7.3 Conjugation Reactions

A.8 Summary

Acknowledgment
References