The Finite Element Analysis of Shells – Fundamentals

Second Edition
1. Introduction .. 1
 1.1 Shells: from Nature to Engineering Designs 1
 1.2 The Finite Element Analysis of Shells as Approached in this
 Book ... 4

2. Geometrical Preliminaries 9
 2.1 Vectors and Tensors in Three-Dimensional Curvilinear Coor-
 dinates .. 9
 2.1.1 Vectors and tensors 9
 2.1.2 Covariant and contravariant bases. Metric tensor 11
 2.1.3 Curvilinear coordinate systems 17
 2.1.4 Covariant differentiation 20
 2.2 The Shell Geometry 23
 2.2.1 Geometric definition of a shell 23
 2.2.2 Differential geometry on the midsurface 25
 2.2.3 3D differential geometry for shells 37

3. Elements of Functional and Numerical Analysis 41
 3.1 Sobolev Spaces and Associated Norms 41
 3.1.1 General concepts in vector spaces 42
 3.1.2 L^2 and other Sobolev spaces 48
 3.2 Variational Formulations and Finite Element Approximations 58
 3.2.1 Basic error estimates for displacement-based and mixed
 formulations ... 59
 3.2.2 Interpolation and a priori error estimates 88
 3.2.3 Effect of numerical integration 93

4. Shell Mathematical Models 95
 4.1 Shell Kinematics .. 95
 4.2 Derivation of Shell Models 99
 4.2.1 The "basic shell model" 100
 4.2.2 The "shear-membrane-bending model" 103
 4.2.3 The "membrane-bending model" 104
 4.2.4 Plate models ... 107
4.2.5 Higher-order shell models, and the 3D-shell model... 110
4.3 Mathematical Analysis of the Shell Models 114
 4.3.1 Analysis of the s-m-b shell model 114
 4.3.2 Analysis of the m-b shell model 123
 4.3.3 Analysis of the basic shell model 125
 4.3.4 Analysis of the 3D-shell model 130

5. Asymptotic Behaviors of Shell Models 135
 5.1 General Asymptotic Analysis 136
 5.1.1 Non-inhibited pure bending 143
 5.1.2 Inhibited pure bending 146
 5.1.3 Summary of asymptotic behaviors 150
 5.1.4 Comparison of asymptotic behaviors for specific shell models 152
 5.2 Analysis of the Subspace of Pure Bending Displacements 156
 5.2.1 Elliptic surfaces 157
 5.2.2 Hyperbolic surfaces 158
 5.2.3 Parabolic surfaces 159
 5.3 Influence of the Loading 161
 5.3.1 Effect of the loadings that do not activate the pure bending displacements 161
 5.3.2 Effect of non-admissible membrane loadings 166
 5.4 Asymptotic Analysis of the 3D-Based Shell Models 179
 5.4.1 Asymptotic analysis of the basic shell model 180
 5.4.2 Asymptotic analysis of the 3D-shell model 192
 5.5 Asymptotic Considerations in Dynamic Analysis 208
 5.5.1 Non-inhibited pure bending 208
 5.5.2 Inhibited pure bending 209
 5.5.3 Detailed numerical illustration for a clamped cylinder 210

6. Displacement-Based Shell Finite Elements 219
 6.1 Discretizations of Shell Mathematical Models 219
 6.2 Facet-Shell Elements 224
 6.3 General Shell Elements 228
 6.4 3D-Shell Elements 253

7. Influence of the Thickness in the Finite Element Approximation 259
 7.1 Numerical Locking in Thin Structures 260
 7.2 Treatments of Numerical Locking by Mixed Formulations 266
 7.2.1 Basic principles: the Timoshenko beam example 267
 7.2.2 Applications to the Reissner-Mindlin plate model 276
 7.2.3 Basic principles of stabilized mixed formulations 291
 7.2.4 MITC plate elements 295
 7.3 Specific Difficulties Arising in the Analysis of Shells 304
8. Towards the Formulation of Effective General Shell Elements .. 315
 8.1 Guidelines for Assessing and Improving the Reliability of Shell Finite Elements 315
 8.1.1 Considerations on proper selection and use of test problems .. 315
 8.1.2 Proposed set of test problems .. 323
 8.2 Formulation of MITC Shell Elements 326
 8.2.1 Formulation of quadrilateral MITC elements 326
 8.2.2 Formulation of triangular MITC elements 327
 8.2.3 Insight into MITC shell formulations 332
 8.2.4 Considerations regarding 3D-shell elements 336
 8.3 Assessment Results .. 338
 8.3.1 Shell elements used in plate bending 338
 8.3.2 Axisymmetric hyperboloid 344

9. On the Nonlinear Analysis of Shells 365
 9.1 The Incremental Analysis to Obtain Nonlinear Response Solutions .. 365
 9.2 The Finite Element Discretization of a Shell for General Nonlinear Analysis 367
 9.3 The Fundamental Considerations of Linear Analysis Used in Nonlinear Analysis 370
 9.4 Demonstrative Solutions .. 372
 9.4.1 The “Myth of No-Locking” in nonlinear analysis of shells .. 372
 9.4.2 Large deformation analysis of a simply-supported plate 375
 9.4.3 Nonlinear analysis of thick cantilever beam 376
 9.4.4 Contact analysis of Scordelis-Lo roof 377
 9.4.5 Crash analysis of a tube 380

A. Tables of symbols .. 383
 A.1 Latin Symbols .. 383
 A.2 Greek Symbols .. 386
 A.3 Special Symbols .. 387

B. Some Useful Mathematical Formulas 389

C. Distributions: Basic Definitions and Properties 391

Bibliography .. 395

Index .. 407