REGULATED BIOANALYTICAL LABORATORIES

Technical and Regulatory Aspects from Global Perspectives

MICHAEL ZHOU Ph.D.
Synta Pharmaceuticals Corporation
CONTENTS

Preface

Acknowledgment

Contributors and Advisors

1 **Introduction, Objectives, and Key Requirements for GLP Regulations**
 1.1 Introduction
 1.1.1 Good Laboratory Practices
 1.1.2 Bioanalytical Laboratories—Bioanalysis
 1.1.3 Good Laboratory Practices Versus Bioanalytical Labs/Bioanalysis
 1.2 Objectives and Key Requirements for GLP Regulations
 1.3 Fundamental Understanding of GLP Regulations and Principles
 1.3.1 Elements of Good Laboratory Practices
 1.4 Key Elements of Bioanalytical Methods Validation
 1.4.1 Reference Standards
 1.4.2 Method Development—Chemical/Chromatographic Assay
 1.4.3 Calibration/Standard Curve
 1.4.4 Stability
 1.4.5 Reproducibility
 1.4.6 Robustness or Ruggedness

- Preface: xiii
- Acknowledgment: xvii
- Contributors and Advisors: xix
- Introduction, Objectives, and Key Requirements for GLP Regulations: 1
 - 1.1 Introduction: 1
 - 1.1.1 Good Laboratory Practices: 1
 - 1.1.2 Bioanalytical Laboratories—Bioanalysis: 4
 - 1.1.3 Good Laboratory Practices Versus Bioanalytical Labs/Bioanalysis: 7
 - 1.2 Objectives and Key Requirements for GLP Regulations: 8
 - 1.3 Fundamental Understanding of GLP Regulations and Principles: 10
 - 1.3.1 Elements of Good Laboratory Practices: 11
 - 1.4 Key Elements of Bioanalytical Methods Validation: 16
 - 1.4.1 Reference Standards: 19
 - 1.4.2 Method Development—Chemical/Chromatographic Assay: 20
 - 1.4.3 Calibration/Standard Curve: 21
 - 1.4.4 Stability: 21
 - 1.4.5 Reproducibility: 23
 - 1.4.6 Robustness or Ruggedness: 23
1.5 Basic Principles of Bioanalytical Method Validation and Establishment
 1.5.1 Specific Recommendations for Method Validation
 1.5.2 Acceptance Criteria for Analytical Run

References

2 Historic Perspectives of GLP Regulations, Applicability, and Relation to Other Regulations
 2.1 Historic Perspectives of GLP Regulations
 2.1.1 Economic Assessment
 2.1.2 Environmental Impact
 2.2 Applicability and Relations to Other Regulations/Principles
 2.2.1 GLP, GCP, GMP, and Part 11
 2.2.2 General Terminologies and Definitions of GxPs (GLP, GCP, and cGMP)
 2.3 Comparison of FDA GLP, EPA GLP Regulations, and OECD GLP Principles
 2.3.1 US and OECD GLP Similarity and Differences
 2.4 Applications of GLP to Multiple Site Studies
 2.4.1 Roles and Responsibilities
 2.4.2 Performance of the Studies
 2.4.3 Applications of GLP to In Vitro Studies for Regulatory Submissions
 2.5 21 CFR Part 11 in Relation to GLP Programs
 2.5.1 A New Risk-Based Approach
 2.5.2 Understanding Predicate Rule Requirements
 2.5.3 21 CFR Part 11 Best Practices
 2.5.4 Use of Electronic Signatures
 2.6 GLP, cGMP, and ISO Applicabilities, Similarity, and Differences
 2.6.1 GLPs, cGMPs, ISO 17025:2005: How Do They Differ?
 2.6.2 GLPs Versus GMPs
 2.6.3 GLPs Versus ISO/IEC 17025:2005
 2.6.4 ISO Versus GLPs
 2.7 Good Clinical Practices and Good Clinical Laboratory Practices
 2.8 Gap and Current Initiatives on Regulating Laboratory Analysis in Support of Clinical Trials

References

3 GLP Quality System and Implementation
 3.1 GLP Quality System
 3.1.1 Regulatory Inspection for GLP Quality System
 3.1.2 Good Laboratory Practice Inspections
 3.1.3 GLP Quality System Objectives
 3.2 Global GLP Regulations and Principles
 3.2.1 General
3.2.2 Responsibilities and Compliance 107
3.2.3 Statement of Compliance in the Final Report 107
3.2.4 Protocol Approval 108
3.2.5 Assignment of Study Director 108
3.2.6 Laboratory Qualification/Certification 108
3.2.7 Authority Inspections 108
3.2.8 Archiving Requirements 108

3.3 Implementation of GLP Regulations and OECD Principles 109
3.3.1 Planning (Master Schedule) 114
3.3.2 Personnel Organization 115
3.3.3 Curriculum Vitae 115
3.3.4 Rules of the Conducts of Studies 116
3.3.5 Content of Study Protocol 116
3.3.6 Approval of Study Protocol 118
3.3.7 Distribution of Study Protocol 118
3.3.8 Protocol Amendment 118
3.3.9 Standard Operating Procedures 119
3.3.10 SOP System Overview 119
3.3.11 Characterization 121
3.3.12 Test Item/Article Control before Formulation 121
3.3.13 Preparation of the Dose Formulation 123
3.3.14 Sampling and Quality Control of Dose Formulation 125

3.4 Initiatives and Implementation of Bioanalytical Method Validation (Guidance for Industry BMV—May 2001) 126
3.4.1 Summary 127

References 128

4 Fundamental Elements and Structures for Regulated Bioanalytical Laboratories 131
4.1 Introduction 131
4.2 Fundamental Elements for Bioanalytical Laboratories 133
4.2.1 Document Retention and Archiving 136
4.3 Basic Requirements for GLP Infrastructure and Operations 139
4.4 GxP Quality Systems 143
4.4.1 Laboratory Instrument Qualification and Validation 149
4.4.2 Procedural Elements and Function that Maintain Bioanalytical Data Integrity for GLP Studies 150

References 166

5 Technical and Regulatory Aspects of Bioanalytical Laboratories 167
5.1 Fundamental Roles and Responsibilities of Bioanalytical Laboratories 167
5.1.1 Technical Functions of Bioanalytical Laboratories 168
5.1.2 Basic Processes in Bioanalytical Method Development, Validation, and Sample Analysis 173
5.2 Qualification of Personnel, Instrumentation, and Analytical Procedures

5.2.1 From Regulatory Perspectives: Personnel, Training, and Qualification

5.2.2 Facility Design and Qualifications

5.2.3 Equipment Design and Qualification

5.2.4 Analytical/Bioanalytical Method Qualification and Validation along with Related SOPs

5.3 Regulatory Compliance with GLP Within Bioanalytical Laboratories

5.4 Joint-Effort from Industries and Regulatory Agencies

5.4.1 Ligand-Binding Assays In-Study Acceptance Criteria

5.4.2 Determination of Metabolites during Drug Development

5.4.3 Incurred Sample Analysis

5.4.4 Documentation Issues

5.4.5 Analytical/Validation Reports

5.4.6 Source Data Documentation

5.4.7 Final Report Documentation

5.4.8 Stability Recommendation

5.4.9 Matrix Effects for Mass Spectrometric-Based Assays

5.4.10 System Suitability

5.4.11 Reference Standards

5.4.12 Validation Topics with No Consensus

5.4.13 Specific Criteria for Cross-Validation

5.4.14 Separate Stability Experiments Required at $-70\degree\text{C}$ if Stability Shown at $-20\degree\text{C}$

5.4.15 Stability Criteria for Stock Solution Stability

5.4.16 Acceptance Criteria for Internal Standards

5.4.17 Summary

References

6 Competitiveness of Bioanalytical Laboratories—Technical and Regulatory Perspectives

6.1 Technical Aspect of Competitive Bioanalytical Laboratories

6.2 Bioanalytical Processes and Techniques

6.2.1 Sample Generation, Shipment, and Storage

6.2.2 Sample Preparation

6.3 Enhancing Throughput and Efficiency in Bioanalysis

6.3.1 Chromatographic Separation

6.3.2 Selective and Sensitive Detection

6.4 Technical Challenges and Issues on Regulated Bioanalysis

6.4.1 Matrix Effect

6.4.2 Method Validation and Critical Issues during Sample Analysis

6.4.3 Method Transfer
6.5 Regulatory Aspects of Competitive Bioanalytical Laboratories 264
 6.5.1 General Consideration 264
 6.5.2 Historical Perspective 265
 6.5.3 Personnel—Training and Qualification 267
 6.5.4 Facility—Design and Qualifications 269
 6.5.5 Equipment Design and Qualification 270
 6.5.6 Standard Operating Procedures 272
 6.5.7 Laboratory/Facility Qualification Perspectives 272
6.6 Advanced/Competitive Bioanalytical Laboratories 277
 6.6.1 Strategy Versus Tactics 278
 6.6.2 Bioanalytical Laboratory Assessment 279
 6.6.3 Capacity 279
 6.6.4 Experience 280
 6.6.5 Quality 281
 6.6.6 Performance and Productivity Measures 281
 6.6.7 Information Technology and Data Management 282
 6.6.8 Communication 282
 6.6.9 Financial Stability 283
 6.6.10 Ease of Use 283
 6.6.11 Contracting Bioanalytical Services 284
 6.6.12 The Contracting Process 284
6.7 Applications and Advances in Biomarker and/or Ligand-Binding Assays within Bioanalytical Laboratories 286

References 290

7 Sponsor and FDA/Regulatory Agency GLP Inspections and Study Audits 297
 7.1 GLP versus Biomedical Research Monitoring and Mutual Acceptance of Data for Global Regulations and Inspections 298
 7.2 Purposes and Benefits of Regulatory Inspections/Audits 303
 7.2.1 Criteria for Selecting Ongoing and Completed Studies 304
 7.2.2 Areas of Expertise of the Facility 305
 7.2.3 Establishment Inspections 305
 7.2.4 Organization and Personnel (21 CFR 58.29, 58.31, 58.33) 305
 7.2.5 Quality Assurance Unit (QAU; 21 CFR 58.35) 307
 7.2.6 Facilities (21 CFR 58.41–58.51) 308
 7.2.7 Equipment (21 CFR 58.61–58.63) 309
 7.2.8 Testing Facility Operations (21 CFR 58.81) 310
 7.2.9 Reagents and Solutions (21 CFR 58.83) 311
 7.2.10 Animal Care (21 CFR 58.90) 311
 7.2.11 Test and Control Articles (21 CFR 58.105–58.113) 312
 7.2.12 Test and Control Article Handling (21 CFR 58.107) 313
 7.2.13 Protocol and Conduct of Nonclinical Laboratory Study (21 CFR 58.120–58.130) 314
7.2.14 Study Protocol (21 CFR 58.120) 314
7.2.15 Test System Monitoring 314
7.2.16 Records and Reports (21 CFR 58.185–58.195) 314
7.2.17 Data Audit 316
7.2.18 General 316
7.2.19 Final Report Versus Raw Data 317
7.2.20 Specimens Versus Final Report 318
7.2.21 Refusal to Permit Inspection 318
7.2.22 Sealing of Research Records 318
7.2.23 Samples 319
7.3 Typical Inspections/Audits and Their Observations 320
7.4 Regulatory Challenges for Bioanalytical Laboratories 321
 7.4.1 Introduction 321
 7.4.2 Analysis of Current FDA Inspection Trends 324
 7.4.3 Discussion and Analysis of Specific Potential FDA 483 Observation Issues 325
 7.4.4 Method Validation Issues 325
 7.4.5 Batch Runs Acceptance Criteria Issues 329
 7.4.6 Events/Deviations Investigation/Resolution Issues 331
 7.4.7 Test Specimen Accountability Issue 333
 7.4.8 Recommendations to Support an Effective FDA Inspection Readiness Preparation 334
7.5 Handling and Facilitating GLP or GxP Audits/Inspections 334
 7.5.1 General Preparation for an Inspection 336
 7.5.2 Why Are Audits/Inspections Needed and Conducted? 342
 7.5.3 Written Policy in Place 342
 7.5.4 Positions on Controversial Issues 343
 7.5.5 The Inspection Coordinator 344
 7.5.6 Follow-Up Procedures 348
 7.5.7 Summary 349
References 351

8 Current Strategies and Future Trends 353
 8.1 Strategies from General Laboratory and Regulatory Perspectives 354
 8.2 Strategies from Technical and Operational Perspectives 356
 8.3 Biological Sample Collection, Storage, and Preparation 360
 8.3.1 Sample Collection and Storage 360
 8.3.2 Sample Preparation Techniques 361
 8.3.3 Off-Line Sample Extraction 364
 8.3.4 On-Line Sample Extraction 364
 8.4 Strategies for Enhancing Mass Spectrometric Detection 366
 8.4.1 Enhanced Mass Resolution 368
 8.4.2 Atmospheric Pressure Photoionization 369
8.4.3 High-Field Asymmetric Waveform Ion Mobility Spectrometry 370
8.4.4 Electron Capture Atmospheric Pressure Chemical Ionization 370
8.4.5 Mobile Phase Optimization for Improved Detection and Quantitation 371
8.4.6 Anionic and Cationic Adducts as Analytical Precursor Ions 372
8.4.7 Derivatization 372
8.5 Strategies for Enhancing Chromatography 374
8.5.1 Ultra-Performance Chromatography 375
8.5.2 Hydrophilic Interaction Chromatography for Polar Analytes 376
8.5.3 Specialized Reversed-Phase Columns for Polar Analytes 377
8.5.4 Ion-Pair Reversed-Phase Chromatography for Polar Analytes 378
8.6 Potential Pitfalls in LC–MS/MS Bioanalysis 378
8.6.1 Interference from Metabolites or Prodrugs due to In-Source Conversion to Drug 378
8.6.2 Interference from Metabolites or Prodrugs due to Simultaneous $M + H^+$ and $M + NH_4^+$ Formation or Arising from Isotopic Distribution 379
8.6.3 Pitfall in Analysis of Two Interconverting Analytes due to Inappropriate Method Design 383
8.6.4 Matrix Effect 383
8.7 Trends in High-Throughput Quantitation 386
8.7.1 System Throughput 386
8.7.2 High-Speed HPLC 386
8.8 Trends in Hybrid Coupling Detection Techniques 388
8.9 Trends in Internal R&D and External Outsourcing 388
8.10 Trends in Ligand-Binding Assays and LC–MS/MS for Biomarker Assay Applications 397
8.11 Trends in Study Design and Evaluation Relating to Bioanalysis 399
8.12 Trends in Applying GLP to In Vitro Studies in Support of Regulatory Submissions 403
8.13 Trends in Global R&D Operations 404
8.14 Trends in Regulatory Implementations 407
8.14.1 Calibration Range and Quality Control Samples 407
8.14.2 Incurred Sample Reproducibility (Duplicate Sample Analysis) 408
8.14.3 LIMS and Electronic Data Handling, Security, Archiving, and Submission 409
8.15 Trends in Global Regulations and Quality Standards 412
CONTENTS

8.16 Trends in Compliance with 21 CFR Part 11
 8.16.1 21 CFR Part 11 Software Requirements
 8.16.2 Building a Roadmap for Compliance with 21 CFR Part 11
 8.16.3 Low Hanging Fruits in the Roadmap for Compliance with 21 CFR Part 11

8.17 Summary

References

9 General Terminologies of GxP and Bioanalytical Laboratories
 9.1 General Terminologies for GxP and Bioanalytical Laboratories
 9.2 GLP Basic Concepts and Implementation
 9.2.1 The Study Protocol
 9.2.2 Raw Data
 9.2.3 The GLP Archive and the Archivist
 9.2.4 Expansion of GLP Scope
 9.2.5 OECD GLP
 9.3 GLP Guidance Documents
 9.3.1 FDA Guidance for Industry on Bioanalytical Method Validation
 9.3.2 OECD GLP Guidance Documents
 9.3.3 Swiss GLP Guidance Documents

References and Sources for Above Terminologies

Appendix A Generic Checklist for GLP/GxP Inspections/Audits

Appendix B General Template for SOP

Appendix C Typical SOPs for GLP/Regulated Bioanalytical Laboratory
 Quality Assurance—GLP
 Bioanalytical—GLP Laboratories

Appendix D Basic Equipment/Apparatus for Bioanalytical Laboratory

Appendix E Website Linkages for Regulated Bioanalysis

Index