Membrane Transporters in Drug Discovery and Development

Methods and Protocols

Edited by

Qing Yan

PharmTao, Santa Clara, California, USA

Humana Press
Contents

Preface .. p

Contributors ... xi

1. Membrane Transporters and Drug Development: Relevance to Pharmacogenomics, Nutrigenomics, Epigenetics, and Systems Biology 1
 Qing Yan

2. Bioinformatics for Transporter Pharmacogenomics and Systems Biology: Data Integration and Modeling with UML 23
 Qing Yan

 Ming Ken Ten, Jonathan S. Chen, Jose L. Marquez, Eric I. Sun, and Milton H. Saier

4. Targeting Drug Transporters – Combining In Silico and In Vitro Approaches to Predict In Vivo 65
 Praveen M. Bahadduri, James E. Polli, Peter W. Swaan, and Sean Ekins

5. Methods to Evaluate Transporter Activity in Cancer 105
 Takeo Nakanishi, Douglas D. Ross, and Keisuke Mitsuoka

6. Analysis of Expression of Drug Resistance-Linked ABC Transporters in Cancer Cells by Quantitative RT-PCR 121
 Anna Maria Calcagno and Suresh V. Ambudkar

7. Fluorescence Studies of Drug Binding and Translocation by Membrane Transporters .. 133
 Frances J. Sharom, Ronghua Liu, and Balpreet Vinepal

 Dennis J. Bobilya

9. Genetic Variants in the Vesicular Monoamine Transporter 1 (VMAT1/SLC18A1) and Neuropsychiatric Disorders 165
 Falk W. Loboff

10. Equilibrium Binding and Transport by Vesicular Acetylcholine Transporter ... 181
 Parul Khare, Aubrey R. White, Anuprao Mulakaluri, and Stanley M. Parsons

11. ABC Transporters in Ophthalmic Disease 221
 Corey Westerfeld
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Imaging of Protein Translocation In Situ in Skeletal Muscle of Living Mice</td>
<td>Hans P.M.M. Lauritzen</td>
<td>231</td>
</tr>
<tr>
<td>13</td>
<td>Glucose Transporters in Parasitic Protozoa</td>
<td>Scott M. Landfear</td>
<td>245</td>
</tr>
<tr>
<td>14</td>
<td>NMR Studies of Membrane Proteins</td>
<td>Gabriel A. Cook and Stanley J. Opella</td>
<td>263</td>
</tr>
<tr>
<td>15</td>
<td>Site-Directed Mutagenesis in the Study of Membrane Transporters</td>
<td>Audra A. McKinzie, Renae M. Ryan, and Robert J. Vandenberg</td>
<td>277</td>
</tr>
<tr>
<td>16</td>
<td>Xenopus laevis Oocytes</td>
<td>Stefan Bröer</td>
<td>295</td>
</tr>
<tr>
<td>17</td>
<td>Measurement of Intracellular pH</td>
<td>Frederick B. Loiselle and Joseph R. Casey</td>
<td>311</td>
</tr>
<tr>
<td>18</td>
<td>Measurement of Plasma Membrane Calcium-Calmodulin-Dependent ATPase (PMCA) Activity</td>
<td>Tamer M. A. Mohamed, Florence M. Baudoin-Stanley, Riham Abou-Leisa, Elizabeth Cartwright, Ludwig Neyses, and Delvac Oceandy</td>
<td>333</td>
</tr>
<tr>
<td>19</td>
<td>Assessment of the Contribution of the Plasma Membrane Calcium ATPase, PMCA, Calcium Transporter to Synapse Function Using Patch Clamp Electrophysiology and Fast Calcium Imaging</td>
<td>Chris J. Roome and Ruth M. Empson</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>Subject Index</td>
<td></td>
<td>361</td>
</tr>
</tbody>
</table>