Dopamine Handbook

Edited by

LESLIE L. IVERSEN, PHD, FRS
Professor of Pharmacology
University of Oxford
Oxford, UK

SUSAN D. IVERSEN, PHD
Department of Experimental Psychology
University of Oxford
Oxford, UK

STEPHEN B. DUNNETT, PHD
School of Biosciences
Cardiff University
Cardiff, UK

ANDERS BJÖRKLUND, MD, PHD
Wallenberg Neuroscience Center
Division of Neurobiology
Lund University
Lund, Sweden

OXFORD UNIVERSITY PRESS
2010
Contents

Contributors xi

1 Overview: A personal view of the dopamine neuron in historical perspective 3
Floyd E. Bloom

2 Neuroanatomy 9
2.1. Functional Neuroanatomy of Dopamine in the Striatum 11
Charles R. Gerfen
2.2. Functional Implications of Dopamine D2 Receptor Localization in Relation to
Glutamate Neurons 22
Susan R. Sesack
2.3. Convergence of Limbic, Cognitive, and Motor Cortico-Striatal Circuits with Dopamine
Pathways in Primate Brain 38
Suzanne N. Haber
2.4. The Relationship between Dopaminergic Axons and Glutamatergic Synapses in the Striatum:
Structural Considerations 49
Jonathan Moss and J. Paul Bolam

3 Molecular pharmacology 61
3.1. Molecular Pharmacology of the Dopamine Receptors 63
Michele L. Rankin, Lisa A. Hazelwood, R. Benjamin Free, Yoon Namkung,
Elizabeth B. Rex, Rebecca A. Roof, and David R. Sibley
3.2. Role of Dopamine Transporters in Neuronal Homeostasis 88
Marc G. Caron and Raul R. Gainetdinov
3.3. Intracellular Dopamine Signaling 100
Gilberto Fisone
3.4. Ion Channels and Regulation of Dopamine Neuron Activity 118
Birgit Liss and Jochen Roeper

4 Genes in development 139
4.1. Genetic Control of Meso-diencephalic Dopaminergic Neuron Development in Rodents 141
Wolfgang Wurst and Nilima Prakash
4.2. Factors Shaping Later Stages of Dopamine Neuron Development 160
Robert E. Burke
4.3. Postnatal Maturation of Dopamine Actions in the Prefrontal Cortex 177
Patricio O’Donnell and Kuei Y. Tseng
4.4. Genetic Dissection of Dopamine-Mediated Prefrontal-Striatal Mechanisms and Its Relationship to Schizophrenia 187
Hao-Yang Tan and Daniel R. Weinberger

5 Dopamine in prefrontal cortex and cognition 201
5.1. From Behavior to Cognition: Functions of Mesostriatal, Mesolimbic, and Mesocortical Dopamine Systems 203
Trevor W. Robbins
5.2. Contributions of Mesocorticolimbic Dopamine to Cognition and Executive Function 215
Stan B. Floresco
5.3. Dopamine’s Influence on Prefrontal Cortical Cognition: Actions and Circuits in Behaving Primates 230
Amy F.T. Arnsten, Susheel Vijayraghavan, Min Wang, Nao J. Gamo, and Constantinos D. Paspalas
5.4. Dopaminergic Modulation of Flexible Cognitive Control in Humans 249
Roshan Cools and Mark D’Esposito
5.5. Neurocomputational Analysis of Dopamine Function 261
Daniel Durstewitz

6 Striatum and midbrain—motor and motivational functions 277
6.1. Dopamine and Motor Function in Rat and Mouse Models of Parkinson’s Disease 279
Timothy Schallert and Sheila M. Fleming
6.2. Involvement of Nucleus Accumbens Dopamine in Behavioral Activation and Effort-Related Functions 286
John D. Salamone
6.3. Functional Heterogeneity in Striatal Subregions and Neurotransmitter Systems: Implications for Understanding the Neural Substrates Underlying Appetitive Motivation and Learning 301
Brian A. Baldo and Matthew E. Andrzewski
6.4. Behavioral Functions of Dopamine Neurons 316
Philippe N. Tobler

7 Plasticity of forebrain dopamine systems 331
7.1. Dynamic Templates for Neuroplasticity in the Striatum 333
Ann M. Graybiel
7.2. Dopamine and Synaptic Plasticity in Mesolimbic Circuits 339
F. Woodward Hopf, Antonello Bonci, and Robert C. Malenka
7.3. Dopaminergic Modulation of Striatal Glutamatergic Signaling in Health and Parkinson’s Disease 349
D. James Surmeier, Michelle Day, Tracy S. Gertler, C. Savio Chan, and Weixing Shen

8 Dopamine mechanisms in addiction 369
8.1. The Role of Dopamine in the Motivational Vulnerability to Addiction 371
George F. Koob and Michel Le Moal
8.2. Dopaminergic Mechanisms in Drug-Seeking Habits and the Vulnerability to Drug Addiction 389
Barry J. Everitt, David Belin, Jeffrey W. Dalley, and Trevor W. Robbins
8.3. Imaging Dopamine’s Role in Drug Abuse and Addiction 407
Nora D. Volkow, Joanna S. Fowler, Gene-Jack Wang, Frank Telang, and Ruben Baler
CONTENTS

9 Parkinson’s disease 419

9.1. Exploring the Myths about Parkinson’s Disease 421
Yves Agid and Andreas Hartmann

9.2. Pathophysiology of L-DOPA-Induced Dyskinesia in Parkinson’s Disease 434
M. Angela Cenci

9.3. Progression of Parkinson’s Disease Revealed by Imaging Studies 445
David J. Brooks

9.4. Transplantation of Dopamine Neurons: Extent and Mechanisms of Functional Recovery in Rodent Models of Parkinson’s Disease 454
Stephen B. Dunnett and Anders Björklund

Olle Lindvall

9.6. Novel Gene-Based Therapeutics Targeting the Dopaminergic System in Parkinson’s Disease 489
Deniz Kirik, Tomas Björklund, Shilpa Ramaswamy, and Jeffrey H. Kordower

9.7. Neuroprotective Strategies in Parkinson’s Disease 498
C. Warren Olanow

10 Schizophrenia and other psychiatric illnesses 509

10.1. Dopamine Dysfunction in Schizophrenia 511
Anissa Abi-Dargham, Mark Slifstein, Larry Kegeles, and Marc Laruelle

10.2. Neuropharmacological Profiles of Antipsychotic Drugs 520
Bryan L. Roth and Sarah C. Rogan

10.3. How Antipsychotics Work: Linking Receptors to Response 540
Nathalie Ginovart and Shitij Kapur

10.4. Dopamine Dysfunction in Schizophrenia: From Genetic Susceptibility to Cognitive Impairment 558
Heike Tost, Shabnam Hakimi and Andreas Meyer-Lindenberg

10.5. The Role of Dopamine in the Pathophysiology and Treatment of Major Depressive Disorder 572
Boadie W. Dunlop and Charles B. Nemeroff

10.6. Dopamine Modulation of Forebrain Pathways and the Pathophysiology of Psychiatric Disorders 590
Anthony A. Grace

Index 599