Systematic Transaction Level
Communication Modeling with SystemC

Von der Carl-Friedrich-Gauß-Fakultät
Technische Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades
Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation

von Dipl.-Inform. Wolfgang Klingauf
geboren am 15. April 1976 in Bonn

Eingereicht am: 13. Februar 2008
Mündliche Prüfung am: 7. Mai 2008
Referent: Prof. Dr. Ulrich Golze
Korreferent: Prof. Dr. Rolf Drechsler
Contents

I Efficient Communication Modeling with SystemC 1

1 Introduction 3
 1.1 Scope and objectives of this work 4
 1.2 Summary of contributions 6
 1.3 Outline of the document 6

2 Basics of Transaction Level Modeling 7
 2.1 Overview 7
 2.1.1 Raising abstraction 7
 2.1.2 Where is the level in TLM? 8
 2.2 SystemC 10
 2.2.1 Modules, ports, and channels 11
 2.2.2 Events and the simulation semantics of SystemC 12
 2.3 TLM terms and design flow 12
 2.3.1 Structure of TLM models 12
 2.3.2 The various roles of channels 14
 2.3.3 On the notion of transactions 17
 2.3.4 Conclusion 18

3 Towards a Generic TLM Fabric for SystemC and Related Work 19
 3.1 Motivation 19
 3.2 Communication modeling approaches for SystemC 21
 3.2.1 User view 21
 3.2.2 TLM view 22
 3.2.3 Technical view 25
 3.3 Survey of TLM frameworks 26
 3.3.1 Summary 28
 3.4 Discussion 28
 3.4.1 Towards a TLM framework interoperability standard 30

4 The GreenBus Approach 33
 4.1 Introduction 33
 4.2 Requirements 34
 4.3 General concepts 35
 4.4 Bus accurate abstraction approach 37
 4.4.1 Transactions, atoms, and quarks 37
 4.4.2 Abstraction level formalism 41
 4.5 A data representation and transport mechanism for TAQ 43
 4.5.1 Data representation 43
 4.5.2 Transport mechanism 44
 4.5.3 Modeling communication delays 46
 4.5.4 Copy at slave 48
 4.6 Connection layer 48
 4.6.1 Basic port 48
 4.6.2 Payload event queue 49
II Architecture Exploration and Analysis

5 Communication Architecture Exploration

5.1 A router architecture for GreenBus
5.1.1 Address map
5.1.2 PV bypass mode
5.1.3 BA/CC mode
5.2 Scheduling and arbitration
5.3 Protocol simulation
5.3.1 Mapping protocols onto atoms
5.4 Experiments
5.4.1 Processor Local Bus (PLB)
5.4.2 PCI Express
5.4.3 Network-on-Chip
5.5 Discussion of GreenBus CAFM accuracy
5.6 Summary

6 Performance Analysis and Visualization

6.1 Overview
6.2 GreenControl: a model instrumentation framework based on GreenBus
6.2.1 Requirements and related work
6.2.2 Transaction-based approach
6.2.3 Configurable parameters
6.2.4 Parameter database
6.2.5 User APIs
6.2.6 Tool support
6.2.7 Testbench creation using configuration files
6.3 DUST: a SystemC-aware design analysis toolkit
6.3.1 DUST backend
6.3.2 DUST frontend
6.3.3 Minimal-intrusive approach
6.3.4 XML based data processing
6.3.5 Compatibility
6.4 Summary and outlook

Conclusion

7 Summary and Future Work