Flexible Solar Cells
Contents

Preface  IX

1 Towards a Solar Energy Revolution  1
1.1 Flexible Solar Cells  1
1.2 Why We are Entering the Solar Age  5
1.3 Capturing Solar Light and Transferring Energy Efficiently  9
1.4 Three Waves of Innovation  12
1.5 Solar Design  15
1.6 New Solar Companies  22
References  29

2 Photovoltaics  31
2.1 How a Solar Cell Works  31
2.2 The Solar Cell: A Current Generator  38
2.3 Efficiency Limits of the Photovoltaic Conversion  41
2.4 Multiple Junction Cells  44
2.5 Solar Cell Applications  46
2.6 Brief History of Modern Photovoltaics  52
References  53

3 Inorganic Thin Films  55
3.1 Thin Film PV: Technology for the Future  55
3.2 Amorphous Si Thin Films  62
3.3 CIGS Thin Films on Metal Foil  67
3.4 CdTe Thin Films  74
3.5 CIS Thin Films  77
3.6 Environmental and Economic Concerns  80
References  82
4 Organic Thin Film Solar Cells  85
  4.1 Organic Solar Cells  85
  4.2 Bulk Heterojunction Solar Cells  88
  4.3 Optimization of Organic Solar Cells  90
  4.4 Printed Plastic Solar Cells  92
  4.5 Brushing Plastic Solar Cells  98
  4.6 Power Plastic  101

References  106

5 Organic–Inorganic Thin Films  107
  5.1 Dye Cells: A Versatile Hybrid Technology  107
  5.2 DSC Working Principles  111
  5.3 A Roadmap for Dye Solar Cells  118
  5.4 Building-Integrated PV with Colored Solar Cells  124
  5.5 Personalizing Solar Power  126

References  129

6 Emerging Technologies  133
  6.1 The Solar Paradox  133
  6.2 Quantum Well Solar Cells  136
  6.3 Nanostructured Solar Cells  140
  6.4 Graphene Solar Cells  145
  6.5 Nanorectennas  147

References  154

7 Helionomics  157
  7.1 Oil Peak Meets Climate Change  157
  7.2 Solar Energy. Rewarding People, Rewarding Capital Markets  160
  7.3 Zero Emissions, Lean Production  162
  7.4 The Solar Energy Market  165
  7.5 PV Technology Trend  170
  7.6 Grand Solar Plans  173
  7.7 A New Manhattan Project?  177

References  181

List of Companies  183

Index  185