Development of novel chemoenzymatic glycoconjugation and screening systems by genetic and chemical engineering

Von der Fakultät für Lebenswissenschaften
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)
genehmigte
Dissertation
Kumulative Arbeit

von Hendrik Hellmuth
aus Hannover
Content

1 Summary .. 1
2 Outlook ... 2
3 Theoretical Background.. 3
 3.1 Carbohydrate chemistry ... 3
 3.2 Carbohydrates in nature and their utilisation .. 4
 3.2.1 Structural carbohydrates .. 4
 3.2.2 Carbohydrates as energy sources ... 5
 3.2.3 Carbohydrates in protein function and biological interaction processes 7
 3.3 Technical synthesis of carbohydrates ... 11
 3.3.1 Chemical synthesis ... 11
 3.3.2 Enzymatic synthesis of oligosaccharides .. 12
 3.3.2.1 Leloir glycosyltransferases ... 12
 3.3.2.2 Glycosidases .. 13
 3.3.2.3 Glycosynthases / Thioglycosynthases .. 14
 3.3.2.4 Bacterial glucansucrases .. 15
 3.3.2.5 Bacterial fructosyltransferases .. 16
 3.4 Sucrose analogues .. 17
 3.5 Lectins ... 18
 3.6 Reaction analysis & carbohydrate characterisation ... 21
 3.7 Detection systems for carbohydrate interactions .. 23
 3.8 Random mutagenesis & directed evolution ... 24
4 Aim of this work ... 26
5 Development of high throughput screening systems for the detection of glucansucrase activity on novel substrates ... 28
 5.1 Abstract .. 29
 5.2 Introduction ... 29
 5.3 Results and discussion ... 30
 5.3.1 Establishment of a DNS-screen for sucrose analogues 31
 5.3.1.1 Miniaturized fermentation .. 31
 5.3.1.2 Cell disruption .. 32
 5.3.1.3 Screening .. 33
 5.3.2 Establishment of a PNP-screen for p-nitrophenol glycopyranosides 33
 5.3.2.1 Detection of PNP .. 34
 5.3.2.2 Growth-tests with PNP/DMSO medium and different E. coli-strains 34
 5.3.2.3 Growth-Screen with known GTFR-variants .. 35
 5.3.2.4 Screening after lysis ... 36
 5.3.3 Screening of pTH275 GTFR-variants using different substrates 37
 5.4 Conclusion ... 37
 5.5 Experimental ... 38
 5.5.1 Synthesis of sucrose analogues .. 38
 5.5.2 Bacterial strains, gtfr-vectors and growth conditions 38
 5.5.3 Growth in 96-well-flat-bottom- and -PCR-plates 38
 5.5.4 Cell lysis .. 38
 5.5.5 Spectrometric measuring to detect PNP release ... 39
 5.5.6 Growth on PNP-sugar media .. 39
 5.5.7 DNS-Screening .. 39
 5.5.8 PNP-Screening .. 39
 5.6 Acknowledgements ... 40
6 A two-photon fluorescence correlation study of lectins interacting with carbohydrate coated 20 nm beads .. 41
 6.1 Abstract .. 42
 6.2 Introduction ... 43
6.3 Materials and methods

6.3.1 Preparation of the nanospheres

6.3.1.1 4-Aminophenyl \(\alpha \)-d-galactopyranoside 3

6.3.1.2 Glycosylation of nanospheres

6.3.2 Two-Photon Fluorescence Correlation Set-Up

6.4 Results & Discussion

6.4.1 Two-Photon Fluorescence Correlation Curves of unglycosylated Beads of Various Sizes

6.4.2 Two-Photon Fluorescence Correlation Curves of galactosylated and untreated 20 nm Beads as a function of the SBA and Con A concentration

6.5 Conclusions

6.6 Acknowledgements

7 Identification of New Acceptor Specificities of Glycosyltransferase R with the Aid of Substrate Microarrays

7.1 Abstract

7.2 Introduction

7.2.1 Glycosyltransferases

7.3 Results and Discussion

7.3.1 Immobilization of sugars on NH presenting microtitre plates

7.3.2 Enzymatic glycosylation on microtitre plates

7.3.3 Acceptor reactions and sequence alignment with familiar GTFs

7.3.4 Glycosylation of primary alcohols

7.3.5 Glycosylation of amino acid derivatives

7.4 Conclusion

7.5 Experimental Section

7.5.1 Synthesis of acceptors for arrays

7.5.2 Acceptor reactions with GTFR

7.5.2.1 Fermentation of GTFR

7.5.2.2 Microarray experiments

7.5.2.3 Enzymatic glycosylation in solution

7.6 Acknowledgements

8 Highly efficient Chemoenzymatic Synthesis of Novel branched Thiooligosaccharides via Substrate Direction using Glucansucrases

8.1 Abstract

8.2 Communication

8.2.1 Enzymatic glucosylation

8.2.2 Chemical glycosylation

8.2.3 Acknowledgement

8.3 Supporting Information

8.3.1 General

8.3.2 Fermentation of GTFR/GTFA

8.3.3 Activity assay

8.3.4 Synthesis, isolation and characterization of acceptor products

8.3.4.1 Enzymatic synthesis of \(\alpha \)-d-Glucopyranosyl(1\(\rightarrow \)2)O-\(\beta \)-d-galactopyranosyl(1\(\rightarrow \)4)\(\alpha \)-d-glucopyranose (5)

8.3.4.2 Acceptor products of maltose

8.3.4.3 Acceptor products of the tosylated sugars

8.3.4.4 Synthesis of acetylated Thioglycosides: General Procedure A

8.3.4.5 Synthesis of Thioglycosides: General Procedure B

8.4 Communications

9 Switching enzyme reaction specificity between polymer and oligosaccharide synthesis - Random mutagenesis leads to drastically altered product spectra of the Glucansucrase GTFR

9.1 Communication

9.2 Supporting Information

9.2.1 Materials and Methods

9.2.1.1 Oligodeoxynucleotides
9.2.1.2 Bacterial strains, plasmids and culture conditions.

9.2.1.3 General DNA techniques.

9.2.1.4 DNA sequencing.

9.2.1.5 Generation of a mutant gtfR library.

9.2.1.6 Generation of targeted mutations.

9.2.1.7 Library screen for enzymatic activity.

9.2.1.8 Library screen for altered transglycosylation and polymerisation.

9.2.1.9 Fermentation.

9.2.1.10 Thin Layer Chromatography (TLC).

9.2.1.11 High Performance Anion Exchange Chromatography (HPAEC).

9.2.1.12 Enzyme activity assays.

9.2.1.13 K_m-values.

9.2.1.14 k_{cat}-values.

9.2.1.15 Transglycosylation & polymer production.

9.2.1.16 NMR spectra of polymers.

9.2.1.17 Methylation analysis of polymers.

9.2.1.18 Size distribution.

9.2.2 Additional results.

9.2.2.1 Transglycosylation yields.

9.2.2.2 Polymer production.

9.2.2.3 Analysis of oligosaccharides.

10 First insights into the allosylation with the glucansucrase GTFA, using β-D-fructofuranosyl-α-D-allopyranoside as substrate—demonstration of the first known allosyltransferase.

10.1 Abstract.

10.2 Introduction.

10.3 Results and discussion.

10.3.1 Expression of GTFA in E. coli.

10.3.2 Purification of GTFA via NTA-chromatography.

10.3.3 Transglucosylation of acceptors.

10.3.4 Transallosylation of acceptors.

10.4 Conclusion and Outlook.

10.5 Materials and methods.

10.5.1 Fermentation of GTFA.

10.5.2 Oven-dry mass.

10.5.3 Activity test.

10.5.4 His-tag purification.

10.5.5 Enzymatic synthesis of allosylated products.

10.6 Acknowledgements.

11 References.

12 Acknowledgements.

13 Curriculum vitae.