PART I: BASIC PRINCIPLES 1

1 Modern cancer drug discovery: integrating targets, technologies and treatments 3
 Paul Workman and Ian Collins
 1.1 Introduction: changing times 3
 1.2 Successes and limitations 4
 1.3 Integrated small-molecule drug discovery and development 10
 1.4 New molecular targets: the "druggable" cancer genome 10
 1.5 From drug target to development candidate 16
 1.6 Examples of case histories for molecularly targeted cancer therapeutics 24
 1.7 Biomarkers, the pharmacological audit trail and clinical development 26
 1.8 Conclusions and outlook: towards individualized molecular cancer medicine 29
 References 33

2 Preclinical pharmacology and in vivo models 39
 Lloyd Kelland
 2.1 Introduction 39
 2.2 Contemporary preclinical cancer drug discovery 40
 2.3 In vitro pharmacological evaluation 41
 2.4 Information gained from in vitro cell lines 42
 2.5 In vivo pharmacokinetics (PK) and pharmacodynamics (PD): continuing the pharmacological audit trail 43
 2.6 In vivo anti-tumor models: choice and predictiveness? 45
 2.7 Concluding remarks 50
 References 51

3 Clinical trial designs for more rapid proof-of-principle and approval 53
 Mitesh J. Borad and Daniel D. Von Hoff
 3.1 Introduction 53
 3.2 NDA plan at the time of IND 54
 3.3 Phase I trial design innovations 54
 3.4 Concept of a continuous Phase I 59
3.5 Phase II trial design innovations 60
3.6 Phase III trial design innovations (enrichment designs) 67
3.7 Other approaches to enrich trial populations 72
3.8 Innovations in design and selection of endpoints 73
3.9 Regulatory strategies 77
3.10 Other approaches to accelerate drug development 78
3.11 New perspectives 79
3.12 Summary 81
 References 83

PART II: METHODOLOGY 89

4 Structural biology and anticancer drug design 91
 Dominic Tisi, Gianni Chessari, Andrew J. Woodhead and Harren Jhoti
 4.1 Introduction 91
 4.2 High-throughput X-ray crystallography 93
 4.3 Structural biology and structure-based drug design 95
 4.4 Fragment screening using X-ray crystallography 97
 4.5 Case history: cyclin-dependent kinase inhibitors, from fragment hit to clinical candidate 98
 4.6 Compound profiling 102
 4.7 Conclusions 104
 References 105

5 Natural product chemistry and anticancer drug discovery 107
 Donna M. Huryn and Peter Wipf
 5.1 Introduction 107
 5.2 Exemestane (aromasin) 108
 5.3 Fulvestrant/faslodex 109
 5.4 Flavonoids 110
 5.5 Bexarotene (targretin) 111
 5.6 Epothilones 112
 5.7 Maytansine 114
 5.8 Geldanamycin 115
 5.9 UCN-01 116
 5.10 Camptothecin 117
 5.11 Prodigiosin 118
 5.12 Azacitidine 119
 5.13 FK-288 121
 5.14 Hemiamsterlin 122
 5.15 Calicheamicin 124
 5.16 Conclusion 126
 References 126

6 Pharmacokinetics and ADME optimization in drug discovery 131
 Chad L. Stoner, Matthew D. Troutman and Caroline E. Laverty
 6.1 Introduction 131
 6.2 Absorption 133
CONTENTS

6.3 Distribution 140
6.4 Metabolism 142
6.5 Elimination 145
6.6 Biochemical barriers to drug therapy: efflux transporters 145
6.7 Induction 147
6.8 Conclusions 148
References 149

PART III: DRUGS IN THE CLINIC 155

7 Temozolomide: from cytotoxic to molecularly-targeted agent 157
Malcolm F. G. Stevens
7.1 Introduction 157
7.2 Towards imidazotetrazines and azolastone (mitozolomide) 158
7.3 From mitozolomide to temozolomide 160
7.4 Synthesis and chemistry of temozolomide 161
7.5 Early clinical trials on temozolomide 163
7.6 Mode of action of temozolomide 163
7.7 Epigenetic silencing of the MGMT gene 167
7.8 New analogs of temozolomide 167
7.9 Summary: temozolomide, targets, molecular targets and validated targets 168
References 169

8 Camptothecins for drug design, cancer cell death and gene targeting 173
Jérôme Kluza, Paola B. Arimondo, Marie-Hélène David-Cordonnier
and Christian Bailly
8.1 Introduction 173
8.2 Camptothecins: molecular clamps for the topoisomerase I-DNA complex 174
8.3 Design of CPT derivatives: an endless series 177
8.4 From trapped-topoisomerase I to DNA double strand breaks 182
8.5 DNA repair or cell death 183
8.6 Sequence-specific targeting of topoisomerase-mediated DNA cleavage 186
8.7 Structure–activity relationships 188
8.8 Applications 189
8.9 Conclusion 190
References 190

9 Targeting thymidylate synthase by antifolate drugs for the treatment of cancer 198
Ann L. Jackman, Martin Forster and Matthew Ng
9.1 Introduction 198
9.2 Thymidylate synthase as an anti-cancer drug target 199
9.3 CB3717 200
9.4 Raltitrexed 202
9.5 Pemetrexed 207
9.6 Pleuvitrexed 210
9.7 BGC 945 214
9.8 Conclusions 218
References 219
PART IV: NEW AGENTS 227

10 Targeting inactive kinases: structure as a foundation for cancer drug discovery 229
 David J. Hosfield and Clifford D. Mol
 10.1 Introduction 229
 10.2 c-Kit, a Type III receptor protein tyrosine kinase 230
 10.3 c-Abl, a cellular protein tyrosine kinase 239
 10.4 b-Raf–Bay43-9006 co-crystal structure 244
 10.5 P38–BIRB-796 co-crystal structure 245
 10.6 VEGF-R2–4-amino-furopyrimidine co-crystal structure 246
 10.7 Conclusions and perspectives 249
 References 250

11 Cell cycle inhibitors in cancer: current status and future directions 253
 Peter M. Fischer
 11.1 Introduction 253
 11.2 The G1–S nexus 255
 11.3 The DNA replication and damage checkpoints 260
 11.4 Mitosis 266
 11.5 Conclusion 278
 References 279

12 Inhibition of DNA repair as a therapeutic target 284
 Nicola J. Curtin and Thomas Helleday
 12.1 Introduction 284
 12.2 O6-Alkylguanine DNA alkyltransferase (AGT) 286
 12.3 Poly(ADP-ribose) polymerase (PARP) 289
 12.4 DNA-dependent protein kinase (DNA-PK) 295
 12.5 Exploiting synthetic lethality for cancer treatments 297
 12.6 Summary and conclusions 300
 References 300

13 HSP90 inhibitors: targeting the cancer chaperone for combinatorial blockade
 of oncogenic pathways 305
 Swee Y Sharp, Keith Jones and Paul Workman
 13.1 Introduction 305
 13.2 Classes of HSP90 inhibitors 310
 13.3 Summary and future perspectives 326
 References 329

14 Heat shock protein-90 directed therapeutics and target validation 336
 Edward A. Sausville
 14.1 Introduction 336
 14.2 Overview of heat shock protein function 337
 14.3 Benzoquinoid ansamycin HSP90 antagonists 339
 14.4 Radicicol (monorden) 343
CONTENTS

14.5 Radester, radamide, and radanamycin 344
14.6 Purine scaffold inhibitors: PU3 and analogs 344
14.7 Pyrazole resorcinols 344
14.8 Shepherdin-related structures 345
14.9 Novobiocin and analogs 346
14.10 Conclusion and perspectives 347
References 347

15 Inhibitors of tumor angiogenesis 351
Adrian L Harris and Daniele G. Generali
15.1 Introduction: overview of tumor angiogenesis 351
15.2 Tumor angiogenesis: assessment approaches 353
15.3 Tumor angiogenesis-related pathways and anti-angiogenic drugs 356
15.4 Conclusions and future directions 373
References 374

16 The biology and oncology of RAF–ERK signaling 382
Victoria Emuss and Richard Marais
16.1 Introduction 382
16.2 MAP kinase pathways 383
16.3 Outcomes of ERK signaling 384
16.4 RAF proteins 385
16.5 ERK signaling and cancer 390
16.6 Therapeutic opportunities 392
16.7 Conclusions 396
References 397

PART V: THE REALITY OF CANCER DRUGS IN THE CLINIC 403

17 Cancer drug resistance 405
V. Karavasilis, A. Reid, R. Sinha and J.S. de Bono
17.1 Introduction 405
17.2 Drug resistance in conventional chemotherapy 406
17.3 Targeted therapeutics 410
17.4 Conclusions: overcoming resistance to TKI inhibitors 420
References 422

18 Failure modes in anticancer drug discovery and development 424
Homer L. Pearce, Kerry L. Blanchard and Christopher A. Slapak
18.1 Introduction 424
18.2 Failure modes in the discovery process 425
18.3 Failure modes in clinical development 430
18.4 Conclusions 433
References 434

Glossary 436
Index 440