CONTENTS

Contributors xiii

Preface xv

1 From Patent to Prescription: Paving the Perilous Path to Profit 1
Richard J. Pariza

1.1 Introduction, 1
1.2 A Simple Solution to a Complex Problem, 3
1.3 An Intriguing Patent Problem, 8
1.4 Another Structural Insight, 10
References, 15

2 Medicinal Chemistry in the New Millennium: A Glance into the Future 17
Paul W. Erhardt

2.1 Introduction, 17
2.2 Practice of Medicinal Chemistry, 19
 2.2.1 Emergence as a Formalized Discipline, 19
 2.2.2 Early Developments, 23
 2.2.3 Present Status, 26
 2.2.4 Examples Involving Site-Directed Mutagenesis, 27
 2.2.5 Latest Trends, 31
2.3 Evolving Drug Discovery and Development Process, 35
 2.3.1 Working Definition for Medicinal Chemistry, 35
 2.3.2 Immediate- and Long-Term Roles for Medicinal Chemistry, 36
2.4 Pursuing Efficacy, 40
 2.4.1 Gathering Positive, Neutral, and Negative SARs During HTS, 41
 2.4.2 Example Involving Multidrug Resistance of Anticancer Agents, 42
 2.4.3 Compound Libraries: Example of Working with Nature to Enhance Molecular Diversity, 45

2.5 Assessing and Handling Molecular Conformation, 46
 2.5.1 Chemoinformatics, 46
 2.5.2 Obtaining Chemically Correct 3D Structures, 49
 2.5.3 Influence of Biological Environments: Example Involving Drug Metabolism, 50
 2.5.4 Dynamic Energy Relationships: Example Involving a Small Ring System, 52
 2.5.5 Druglike Properties and Privileged Structures, 54
 2.5.6 Tiered Structural Information and Searching Paradigms, 55

2.6 ADMET Considerations, 57
 2.6.1 Assuring Absorption, 57
 2.6.2 Directing Distribution, 58
 2.6.3 Herbal Remedies: Example of Working with Nature to Discover ADMET-Related Synergies, 59
 2.6.4 Brute Force HTS to Uncover Multicomponent Synergies, 62
 2.6.5 Controlling Metabolism: Example Involving a Soft Drug Strategy, 63
 2.6.6 Optimizing Excretion, 65
 2.6.7 Avoiding Toxicity, 65
 2.6.8 Weighting Decision Criteria from Efficacy and ADMET SAR, 67

2.7 Process Chemistry Considerations, 70
 2.7.1 Cost and Green Chemistry, 70
 2.7.2 Defining Stereochemistry: Example Involving Benzylamine Chiral Auxiliary Synthetic Reagents, 71

2.8 Analytical Chemistry/X-ray Diffraction, 74
 2.8.1 Latest Trends, 74
 2.8.2 Examples Involving Dopamine Receptors, c-AMP Phosphodiesterase Enzymes, and the Dynamics of Protein Folding, 75

2.9 Summary, 78
 2.9.1 General Points, 78
 2.9.2 Attributes of Drug Discovery Libraries, Compound Hits, and Lead Compounds, 81
 2.9.3 Formalized Instruction of Medicinal Chemistry, 81
 2.9.4 Intellectual Property Considerations, 83
 2.9.5 Knowledge Versus Diversity Paradox, 84

Acknowledgments, 85
References and Notes, 85

3 Contemporary Drug Discovery
Lester A. Mitscher and Apurba Dutta

3.1 Introduction, 103
 3.1.1 Getting Started, 103

3.2 Characteristics of a Suitable Lead Substance, 104
 3.2.1 Potency and Selectivity, 105
CONTENTS

3.2.2 Structure–Activity Relationships, 107
3.2.3 Toxicity, 107
3.2.4 Changing Appellation of the Best in Series: Analog Attrition, 108
3.3 Some Criteria That a Hit Must Satisfy to Become a Drug, 108
 3.3.1 Level of Potency, 109
 3.3.2 Comparison of Potency and Efficacy, 110
 3.3.3 Druglike Character, 110
 3.3.4 Efficacy Following Oral Administration, 110
 3.3.5 Lipinski Rules for Oral Absorption, 112
 3.3.6 Injectable Medications, 113
 3.3.7 Distribution, 113
 3.3.8 Serum Protein Binding, 114
 3.3.9 Metabolism, 114
 3.3.10 Distribution, 114
 3.3.11 Excretion, 115
 3.3.12 Patenting, 115
 3.3.13 Pharmaceutical Properties, 115
 3.3.14 Idiosyncratic Problems, 115
 3.3.15 Summary, 115
3.4 Example of Drug Development That Illustrates Many of the Aforementioned Considerations, 116
 3.4.1 Control of Blood Pressure with Drugs, 116
 3.4.2 Historical Background, 116
 3.4.3 Finding a Starting Point: A Clue from Nature, 117
 3.4.4 Renin–Angiotensin–Aldosterone System, 117
 3.4.5 Attempts to Inhibit Renin, 119
 3.4.6 Attempts to Inhibit Angiotensin-Converting Enzyme, 119
 3.4.7 Peptides Make Poor Orally Active Drugs, 120
 3.4.8 Analoging Studies of Pit Viper–Inspired Peptides, 120
 3.4.9 Peptidomimetics, 120
 3.4.10 Adaptation to Inhibition of ACE, 121
 3.4.11 Success Inspires Competition, 123
 3.4.12 Taking a Different Approach, 124
 3.4.13 Analoging to Enhance Absorption, 124
 3.4.14 Clinical SAR, 126
 3.4.15 More Recent Work, 128
 3.4.16 Résumé, 128
3.5 Conclusions, 128
 Additional Reading, 128

4 Combinatorial Chemistry in the Drug Discovery Process 129
Ian Hughes
4.1 Introduction, 129
 4.1.1 The Birth of Combinatorial Chemistry, 130
 4.1.2 Development of Screening Strategies for Libraries, 131
 4.1.3 From Peptides to Small Molecule Synthesis, 132
 4.1.4 Beyond Solid-Phase Chemistry, 133
4.2 The Role of Combinatorial Chemistry in Drug Discovery, 135
4.3 Designing Combinatorial Libraries, 137
 4.3.1 Describing and Measuring Diversity, 137
 4.3.2 A More Focused Approach, 139
4.4 Tools for Synthesis of Combinatorial Libraries, 141
 4.4.1 Nonautomated Tools, 141
 4.4.2 Mix-and-Sort Systems, 143
 4.4.3 Automated Synthesizers, 143
 4.4.4 Postsynthesis Processing, 144
4.5 Managing the Combinatorial Process, 146
 4.5.1 Specification of Combinatorial Libraries, 146
 4.5.2 Controlling the Automated Workflow, 146
4.6 From Specialist Discipline to Standard Tool, 148
4.7 Application of Combinatorial Chemistry in Drug Discovery, 149
 4.7.1 Case History 1, 150
 4.7.2 Case History 2, 150
 4.7.3 Case History 3, 151
 4.7.4 Case History 4, 152
4.8 The Future of Combinatorial Chemistry, 154
 4.8.1 Dynamic Combinatorial Libraries, 154
 4.8.2 Miniaturization, 154
4.9 Conclusions, 155
References, 156

5 Parallel Solution-Phase Synthesis

Norton P. Peet and Hwa-Ok Kim

5.1 Introduction, 169
5.2 Ahead of Our Time, 169
5.3 Recent Reports of Parallel Solution-Phase Synthesis, 172
5.4 Solid Supported Reagents, Scavengers, and Catalysts, 178
5.5 The Future, 191
References, 191

6 Timing of Analog Research in Medicinal Chemistry

János Fischer and Anikó Gere

6.1 Introduction, 199
6.2 Early Phase Analogs, 199
 6.2.1 ACE Inhibitors, 199
 6.2.2 AT1 Antagonists, 200
 6.2.3 Proton Pump Inhibitors, 200
 6.2.4 Insulin Sensitizers: Glitazones, 200
 6.2.5 HMG-CoA Reductase Inhibitors, 202
 6.2.6 Antimigraine Drugs, 202
6.3 Drug Analogs, 202
 6.3.1 Metoclopramide Analogs, 203
 6.3.2 Azatadine Analogs, 205
 6.3.3 Miconazole Analogs, 205
 6.3.4 Nifedipine Analogs, 206
CONTENTS

7 Possible Alternatives to High-Throughput Screening 213
Camille G. Wermuth

7.1 Introduction, 213
7.2 Analog Design, 214
 7.2.1 Definitions, 214
 7.2.2 Pharmacophore-Based Analog Design: Scaffold Hopping
 or Scaffold Morphing, 215
 7.2.3 Natural Compounds as Models, 216
 7.2.4 Emergence of New Activities, 216
7.3 Physiopathological Hypotheses, 217
 7.3.1 Discovery of Levodopa, 217
 7.3.2 H₂-Receptor Antagonists, 219
 7.3.3 Rimonabant and Obesity, 220
7.4 Contributions from Clinical Investigations, 221
7.5 New Leads from Old Drugs: The SOSA Approach, 223
 7.5.1 Rationale, 223
 7.5.2 Examples, 223
 7.5.3 Discussion, 226
7.6 Conclusion, 228
References, 229

8 Proteomics and Drug Discovery 233
Susan Dana Jones and Peter G. Warren

8.1 Introduction, 233
8.2 Drug Discovery Process, 234
 8.2.1 Process Overview, 234
 8.2.2 Motivation for Improvement, 236
8.3 High-Throughput Screening Approaches to Drug Discovery, 236
8.4 Emerging Technologies and Approaches: Scale and Speed, 237
8.5 Genomics, 237
8.6 Proteomics, 238
 8.6.1 Functional Areas of Proteomics, 239
 8.6.2 Fractionation and Purification, 239
 8.6.3 Identification, 240
 8.6.4 Quantitation, 242
 8.6.5 Characterization, 243
8.7 Protein Chip Technology, 248
 8.7.1 Issues Addressed, 248
 8.7.2 Current State of the Technology, 249
8.8 Proteomics Data Analysis: Computational Biology and
 Bioinformatics, 253
8.9 Proteomics and Drug Discovery, 256
 8.9.1 Target Identification, 256
 8.9.2 Target Validation, 258
 8.9.3 Screening for Hits, 259
 8.9.4 Lead Optimization, 261
 8.9.5 Pharmacology and ADME-Tox, 262
 8.9.6 Clinical Trials: Biomarkers and Pharmacogenomics, 263
 8.9.7 Case Study, 265
 8.10 Conclusions, 266
Acknowledgments, 267
References, 267
Appendix: Public-Domain Software Tools and Databases, 269

9 Using Drug Metabolism Databases During Drug Design and Development 273
Paul W. Erhardt

9.1 Introduction, 273
9.2 Historical Perspective, 275
9.3 Present Status, 276
9.4 Future Prospects, 280
9.5 Summary, 287
References and Notes, 288

10 Discovery of the Antiulcer Drug Tagamet 295
C. Robin Ganellin

10.1 Historical Background, 295
 10.1.1 Prologue, 295
 10.1.2 Pharmacological Receptors, 296
 10.1.3 Peptic Ulcer Disease, 296
 10.1.4 Search for New Antiulcer Drugs, 298
10.2 Search for an H₂-Receptor Histamine Antagonist, 298
 10.2.1 Histamine Receptors, 298
 10.2.2 Biological Approach to a Histamine Antagonist at Non-H₁
 Receptors, 299
 10.2.3 Chemical Approach to an Antagonist: Generating a Lead, 300
 10.2.4 Lead Optimization, 301
 10.2.5 Validating the Research Program, 303
10.3 Development of a Clinical Candidate Drug, 305
 10.3.1 Dynamic Structure–Activity Analysis, 305
 10.3.2 Imidazole Tautomerism and Sulfur Methylene Isosterism, 306
 10.3.3 Isosteres of Thiourea and the Discovery of Cimetidine, 307
 10.3.4 Cimetidine: A Breakthrough in the Treatment of Peptic Ulcer
 Disease, 308
10.4 Summary and Further Observations, 309
References, 310
11 Discovery of Potent Nonpeptide Vasopressin Receptor Antagonists 313

Bruce E. Maryanoff

11.1 Introduction, 313
11.2 Genesis of the Vasopressin Receptor Antagonist Project, 315
11.3 Vasopressin, Its Receptors, and Disease, 315
11.4 The Game Plan, 317
11.5 Novel Chemotypes: Variations on a Theme, 319
 11.5.1 Azepinoindoles, 319
 11.5.2 Bridged Bicyclic Derivatives, 322
 11.5.3 Thiazino-, Oxazino-, and Pyrazinobenzodiazepines, 324
11.6 Epilogue, 332

Acknowledgments, 333
References and Notes, 333

12 Discovery and Development of the Ultrashort-Acting Analgesic Remifentanil 339

Paul L. Feldman

12.1 Introduction, 339
12.2 Discovery of Remifentanil, 340
12.3 Chemical Development of Remifentanil, 344
12.4 Human Clinical Trials with Remifentanil, 349
 Acknowledgments, 350
 References, 350

13 Discovery and Development of Nevirapine 353

Karl Grozinger, John Proudfoot, and Karl Hargrave

13.1 Introduction, 353
13.2 Lead Discovery and Optimization, 355
13.3 Chemical Development and Process Research, 357
13.4 Mechanism of Action, 360
13.5 Clinical Studies, 361
 Acknowledgments, 362
 References, 362

14 Applications of Nuclear Imaging in Drug Discovery and Development 365

John W. Babich and William C. Eckelman

14.1 Introduction, 365
 14.1.1 Process and Challenges of Drug Development, 365
 14.1.2 Role and Contribution of Position Emission Tomography, 366
14.2 Principles and Evolution of Technology, 366
 14.2.1 Introduction to PET Principles, 366
 14.2.2 Suitable Targets, 367
 14.2.3 Suitable Animal Models, 367
14.3 Role in Drug Discovery, 368
CONTENTS

14.3.1 Target Validation and Drug Design, 368
14.3.2 Preclinical Studies, 371
14.3.3 Clinical Studies, 373
14.4 Summary and Outlook, 376
References, 377

15 Polymeric Sequestrants as Nonabsorbed Human Therapeutics 383
Pradeep K. Dhal, Chad C. Huval, and S. Randall Holmes-Farley
15.1 Introduction, 383
15.2 Polymers as Specific Molecular Sequestrants, 384
15.3 Sequestration of Inorganic Ions in the GI Tract, 385
15.4 Polymeric Potassium Sequestrants: A Nonabsorbed Therapy for Hyperkalemia, 385
15.5 Polymeric Drugs for Chronic Renal Failure, 386
15.6 Polymeric Iron Sequestrants for the Treatment of Iron Overload Disorders, 389
15.7 Sequestration of Bile Acids: Polymers as Cholesterol-Lowering Agents, 392
15.8 Sequestration of Pathogens: Polymeric Anti-infective Agents, 396
15.9 Sequestration of Toxins, 397
15.10 Polymeric Antimicrobial Agents, 400
15.11 Conclusions and Outlook, 401
References, 402

16 Botanical Immunomodulators and Chemoprotectants in Cancer Therapy 405
Bhushan Patwardhan, Sham Diwanay, and Manish Gautam
16.1 Introduction, 405
16.2 Immunomodulation, 406
16.3 Ethnopharmacology and Botanical Immunomodulators, 406
16.4 Adaptogens or Adjustive Medicine, 407
16.4.1 Botanicals with Adaptogenic Activity, 407
16.4.2 Rasayana Botanicals as Adaptogens, 408
16.5 Chemoprotection, 409
16.5.1 Drug Targets and Current Trends, 409
16.5.2 Chemoprotectants for Antimetabolites, 410
16.5.3 Thiol-Based Chemoprotectants for Cisplatin and Oxazophosphorine-Based Alkylating Agents, 411
16.5.4 Chemoprotectants for Anthracyclines, 414
16.5.5 Botanical Immunomodulators as Chemoprotectants, 414
16.6 Radioprotection, 417
16.6.1 Radioprotectants from Botanicals, 418
16.6.2 Botanical Immunomodulators as Antitumor Agents, 418
16.7 Conclusions, 419
References, 420

Index 425