Biology in Space and Life on Earth

Effects of Spaceflight on Biological Systems

Edited by
Enno Brinckmann
Contents

Foreword XI
Preface XIII
List of Contributors XV

Introduction 1
Enno Brinckmann
(with contributions from René Demets and Wolfgang Herfs)

1 Flight Mission Scenarios 1
2 Sounding Rocket Experiments 4
3 Biobox on Foton and in the Space Shuttle 6
3.1 Biobox-1 7
3.2 Biobox-2 8
3.3 Biobox-3 8
3.4 Biobox-4 9
4 Biorack in Spacelab and Spacehab 9

1 The Gravity Environment in Space Experiments 17
Jack J. W. A. van Loon
1.1 Introduction to Gravity Research 17
1.1.1 Principle of Equivalence 18
1.1.2 Microgravity 19
1.1.3 Artificial Gravity 21
1.2 Gravity Phenomena on Small Objects 24
1.2.1 Sedimentation 24
1.2.2 Hydrostatic Pressure 25
1.2.3 Diffusion 26
1.2.4 Convection 27
1.2.5 Diffusion/Convection 27
1.2.6 Buoyancy 28
1.2.7 Coriolis Acceleration 30
Contents

2 Primary Responses of Gravity Sensing in Plants 33
Markus Braun
2.1 Introduction and Historical Background 33
2.2 Evolution of Gravity Sensing Mechanisms under the Earth's Gravity Conditions 35
2.3 Specific Location and Unique Features of Gravity Sensing Cells 36
2.4 Correlation between Statolith Sedimentation and Gravitropic Responses 37
2.5 Is the Actin Cytoskeleton Involved in Gravity Sensing? 39
2.6 Gravireceptors 41
2.7 Second Messengers in Gravisignalling 44
2.8 Modifying Gravitational Acceleration Forces – Versatile Tools for Studying Plant Gravity Sensing Mechanisms 45
2.9 Conclusions and Perspectives 48

3 Physiological Responses of Higher Plants 53
Dieter Volkmann and František Baluška
3.1 Introduction: Historical Overview 53
3.2 Terminological Aspects 54
3.3 Microgravity as a Tool 55
3.3.1 Equipment 55
3.3.2 Testable Hypotheses 55
3.3.2.1 Gravisensitivity 56
3.3.2.2 Stimulus Transformation: Role of the Actomyosin System 56
3.3.2.3 Extracellular Matrix as Anti-gravitational Material 57
3.3.2.4 Existence of Gravity (Microgravity) Related Genes 58
3.3.2.5 Autonomous versus Directed Movements 58
3.4 Microgravity as Stress Factor 59
3.4.1 Cellular Level 59
3.4.2 Developmental Aspects 60
3.5 Gravity-related Paradoxes 61
3.6 Gravity and Evolution 63
3.7 Conclusion and Perspectives 65

4 Development and Gravitropism of Lentil Seedling Roots Grown in Microgravity 71
Gérald Perbal and Dominique Driss-École
4.1 Introduction 71
4.1.1 Development of Lentil Seedlings on the Ground 72
4.1.1.1 Functional Zones of the Primary Root 72
4.1.1.2 Role of the Root Cap 72
4.1.1.3 Meristematic Activity 73
4.1.1.4 Cell Elongation 74
4.1.2 Root Gravitropism on Earth 75
4.1.2.1 Perception of Gravity 75
4.1.2.2 The Root Statocyte 77
4.1.2.3 Gravisensitivity: The Presentation Time 78
4.1.2.4 Gravitropic Reaction 80
4.2 Basic Hardware Used to Perform Space Experiments 82
4.2.1 Plant Growth Chambers: The Minicontainers 82
4.2.1.1 Seed Set-up 83
4.2.1.2 Hydration of the Seeds 84
4.2.2 The Glutaraldehyde Fixer 84
4.3 Development in Space 85
4.3.1 Root Orientation in Microgravity 85
4.3.2 Root Growth 88
4.3.3 Cell Elongation 89
4.3.4 Meristemetic Activity 89
4.3.4.1 Mitotic Activity 89
4.3.4.2 Cell Cycle 92
4.4 Root Gravitropism in Space 93
4.4.1 Organelle Distribution within the Statocyte 93
4.4.1.1 Statocyte Polarity 93
4.4.1.2 Positioning of the Nucleus and of the Endoplasmic Reticulum 94
4.4.1.3 Amyloplasts Positioning 96
4.4.2 Gravisensitivity 99
4.4.2.1 Presentation Time 99
4.4.2.2 Models for Dose-Response Curves 104
4.4.2.3 Difference in Gravisensitivity 105
4.4.2.4 Cause of the Difference in Gravisensitivity 107
4.4.2.5 Model of Gravisensing 108
4.4.3 Gravitropic Response 111
4.4.3.1 Absence of Counter-reaction 111
4.4.3.2 Comparison with the Effect of Cytochalasin Treatments 112
4.5 Conclusion 113
4.5.1 Action of Microgravity on Root Growth 113
4.5.2 Gravisensing Cells and Perception of Gravity by Roots 115
4.5.2.1 Statocyte Polarity and Movement of Organelles 115
4.5.2.2 Gravisensing 116

5 Biology of Adherent Cells in Microgravity 123
Charles A. Lambert, Charles M. LaPiére, and Betty V. Nusgens
5.1 Why Cell Biology Research in Microgravity? 123
5.2 Medical Disturbances in Astronauts 124
5.2.1 Similarity to Diseases on Earth 124
5.2.2 Cell Types Potentially Involved 125
5.3 Mechano-receptivity and -reactivity of Adherent Cells in Culture 126
5.3.1 Mechano-transduction at the Cell-Matrix Contacts 127
5.3.2 Mechano-transduction at the Cell-Cell Contacts 129
5.3.3 The Cytoskeleton Network and its Control by the Small RhoGTPases 129

5.3.4 Cells React to Mechanical Stress and Relaxation 132

5.4 Microgravity, the Loss of a Force, Leading to Cellular Disturbances 133

5.4.1 Biological View of the Biophysical Concepts 133

5.4.2 Short Time Microgravity and Space Flights 134

5.4.3 Modelled Altered Gravity 140

5.4.3.1 Averaging the g-Vector 140

5.4.3.2 Free-fall Simulation 145

5.4.3.3 Diamagnetic Levitation 146

5.4.3.4 Hypergravity 146

5.5 From Ground Research to Investigations in Microgravity 146

5.5.1 Testable Hypotheses 147

5.5.2 Experimental Strategy and Constraints 147

5.5.3 The Future 148

6 Microgravity and Bone Cell Mechanosensitivity 157

Rommel C. Bacabac, Jack J. W. A. van Loon, and Jenneke Klein-Nulend

6.1 Overview 157

6.2 Introduction 157

6.3 Mechanotransduction in Bone 162

6.4 Signal Transduction in Mechanosensing 162

6.5 Single Cell Response to Mechanical Loading 163

6.6 Rate-dependent Response by Bone Cells 164

6.7 Implications of Threshold Activation: Enhanced Response to Stochastic Stress 167

6.8 Stress Response and Cellular Deformation 168

6.9 Towards a Quantitative Description of Bone Cell Mechanosensitivity 169

6.10 Implications for the Extreme Condition of Unloading Microgravity 172

7 Bone Cell Biology in Microgravity 179

Geert Carmeliet, Lieve Coenegrachts, and Roger Bouillon

7.1 Overview 179

7.2 Introduction 179

7.3 Bone Remodelling: An Equilibrium between Osteoblasts and Osteoclasts 180

7.4 Human Studies: Response of Bone to Space Flight 181

7.5 Space Flight and Unloading in the Rat Mimics Human Bone Loss 182

7.6 Mechanisms of Decreased Bone Formation Induced by Unloading or Space Flight 182
7.7 Are Osteoblastic Cells *In Vitro* Responding to Altered Gravity Conditions? 184
7.7.1 Proliferation and Apoptosis 184
7.7.2 Differentiation: Matrix Production 185
7.7.3 Differentiation: Growth Factors 186
7.8 Potential Mechanisms of Altered Osteoblastic Behaviour 186
7.9 Conclusion 188

8 Cells of the Immune System in Space (Lymphocytes) 193
Augusto Cogoli and Marianne Cogoli-Greuter
8.1 Introduction 193
8.2 Activation of T Cells 195
8.3 Earliest Data 196
8.4 Spacelab-1, 1983 197
8.5 Spacelab D-1, 1985 197
8.6 Stratospheric Balloon, 1986 200
8.7 Sounding Rockets Maser 3, 1989, and Maser 4, 1990 200
8.8 Spacelab Life Sciences SLS-1, 1991 201
8.9 Russian MIR Station, Missions 7, 8, 9, 1988–1990 203
8.10 Spacelab IML-1, 1992 204
8.11 Sounding Rockets Maxus 1B, 1992, and Maxus 2, 1995 205
8.12 Spacelab IML-2, 1994 209
8.13 Sounding Rocket Maser 9, 2002 211
8.14 Shuttle Flight STS-107, Biopack, 2003 212
8.15 Ground Simulations 212
8.15.1 Marathon Run and Head-down Tilt Test 213
8.15.2 Clinostats 214
8.16 Conclusion 219

9 Evaluation of Environmental Radiation Effects at the Single Cell Level in Space and on Earth 223
Patrick Van Oostveldt, Geert Meesen, Philippe Baert, and André Poffijn
9.1 Introduction 223
9.2 The Space Radiation Environment 224
9.3 HZE Track Detection 225
9.3.1 Confocal Scanning Laser Microscopy for Track Analysis in PADC 226
9.3.2 Time-resolved Track Detection 227
9.4 Results of the RAMIROS Experiment on board of the Soyuz Taxi Flight to the ISS 229
9.4.1 Methods 229
9.4.2 Results and Discussion 230
9.4.2.1 Retrieval of Cell Cultures 230
9.4.2.2 Number of HZE Tracks 230
9.4.2.3 Correlation between HZE Hit and DNA Damage at Single Cell Level 231
9.4.2.4 Space versus Ground Samples 234
9.4.2.5 HZE Hits Before and After Fixation 235
9.4.2.6 Conclusions 235
9.5 Combination of Radiation with other Biological Stress in Space Travel 236
9.6 Interactions between Radiation and Gravity 237
9.7 General Conclusions and Perspectives 239

10 Space Radiation Biology 243
 Cerda Horneck
10.1 Radiation Scenario in Space 243
10.1.1 Cosmic Ionizing Radiation 244
10.1.2 Solar Electromagnetic Radiation 247
10.2 Questions Tackled in Space Radiation Biology 248
10.3 Results of Radiobiological Experiments in Space 250
10.3.1 Life and Cosmic Radiation 250
10.3.1.1 Radiation Dosimetry 250
10.3.1.2 Biological Effects of Cosmic Radiation 254
10.3.1.3 Interaction of Radiation with other Space Flight Factors 259
10.3.1.4 Radiation Protection Guidelines for Astronauts in LEO 262
10.3.2 Life and Solar Electromagnetic Radiation 263
10.3.2.1 Biological effects of Extraterrestrial Solar UV Radiation 264
10.3.2.2 Role of Solar UV Radiation in Evolutionary Processes Related to Life 266
10.4 Outlook: Radiation Biology and Future Exploratory Missions in the Solar System 268
10.4.1 Habitability of Mars 268
10.4.2 Radiation Protection Guidelines for Astronauts during Exploratory Missions 269

Index 275