Modeling of Creep for Structural Analysis

With 77 Figures and 5 Tables
Contents

1 Introduction ... 1
 1.1 Creep Phenomena in Structural Materials 1
 1.1.1 Uni-Axial Creep .. 1
 1.1.2 Multi-Axial Creep and Stress State Effects 7
 1.2 Creep in Engineering Structures 11
 1.3 Basic Approaches to Creep Modeling 15

2 Constitutive Models of Creep 17
 2.1 General Remarks ... 17
 2.2 Secondary Creep .. 22
 2.2.1 Isotropic Creep ... 23
 2.2.1.1 Classical Creep Equations 23
 2.2.1.2 Creep Potentials with Three Invariants
 of the Stress Tensor 25
 2.2.2 Creep of Initially Anisotropic Materials 28
 2.2.2.1 Classical Creep Equations 30
 2.2.2.2 Non-Classical Creep Equations 38
 2.2.3 Functions of Stress and Temperature 44
 2.3 Primary Creep and Creep Transients 48
 2.3.1 Time and Strain Hardening 50
 2.3.2 Kinematic Hardening 53
 2.4 Tertiary Creep and Creep Damage 60
 2.4.1 Scalar-Valued Damage Variables 62
 2.4.1.1 Kachanov-Rabotnov Model 62
 2.4.1.2 Micromechanically-Consistent Models 72
 2.4.1.3 Mechanism-Based Models 75
 2.4.1.4 Models Based on Dissipation 77
 2.4.2 Damage-Induced Anisotropy 78
3 Examples of Constitutive Equations for Various Materials
3.1 Models of Isotropic Creep for Several Alloys
3.1.1 Type 316 Steel
3.1.2 Steel 13CrMo4-5
3.1.3 Aluminium Alloy D16AT
3.1.4 Aluminium Alloy BS 1472
3.2 Model for Anisotropic Creep in a Multi-Pass Weld Metal
3.2.1 Origins of Anisotropic Creep
3.2.2 Modeling of Secondary Creep
3.2.3 Identification of Material Constants

4 Modeling of Creep in Structures
4.1 General Remarks
4.2 Initial-Boundary Value Problems and General Solution Procedures
4.2.1 Governing Equations
4.2.2 Vector-Matrix Representation
4.2.3 Numerical Solution Techniques
4.2.3.1 Time Integration Methods
4.2.3.2 Solution of Boundary Value Problems
4.2.3.3 Variational Formulations and Procedures
4.3 Beams
4.3.1 Classical Beam Theory
4.3.2 Closed Form Solution
4.3.3 Variational Formulation and the Ritz Method
4.3.4 Examples
4.3.4.1 Solutions by the Ritz Method
4.3.4.2 Finite Element Solutions
4.3.5 Stress State Effects and Cross Section Assumptions
4.3.6 First Order Shear Deformation Theory
4.3.7 Example: Refined vs. Classical Beam Theory
4.4 Plates and Shells
4.4.1 Approaches to the Analysis of Plates and Shells
4.4.2 Examples
4.4.2.1 Edge Effects in a Moderately Thick Plate
4.4.2.2 Long Term Strength Analysis of a Steam Transfer Line
A Basic Operations of Tensor Algebra 167
A.1 Polar and Axial Vectors 168
A.2 Operations with Vectors 169
 A.2.1 Addition .. 169
 A.2.2 Multiplication by a Scalar 169
 A.2.3 Scalar (Dot) Product of Two Vectors 170
 A.2.4 Vector (Cross) Product of Two Vectors 170
A.3 Bases .. 171
A.4 Operations with Second Rank Tensors 172
 A.4.1 Addition .. 172
 A.4.2 Multiplication by a Scalar 173
 A.4.3 Inner Dot Product 173
 A.4.4 Transpose of a Second Rank Tensor 173
 A.4.5 Double Inner Dot Product 173
 A.4.6 Dot Products of a Second Rank Tensor and a Vector 174
 A.4.7 Cross Products of a Second Rank Tensor and a Vector 174
 A.4.8 Trace .. 175
 A.4.9 Symmetric Tensors 175
 A.4.10 Skew-Symmetric Tensors 176
 A.4.11 Vector Invariant 176
 A.4.12 Linear Transformations of Vectors 176
 A.4.13 Determinant and Inverse of a Second Rank Tensor 177
 A.4.14 Principal Values and Directions of Symmetric Second
 Rank Tensors 177
 A.4.15 Cayley-Hamilton Theorem 178
 A.4.16 Coordinates of Second Rank Tensors 178
 A.4.17 Orthogonal Tensors 179

B Elements of Tensor Analysis 181
B.1 Coordinate Systems 181
B.2 Hamilton (Nabla) Operator 182
B.3 Integral Theorems 184
B.4 Scalar-Valued Functions of Vectors and Second Rank Tensors 185