Handbook of Therapeutic Antibodies

Volume I

Edited by
Stefan Dübel
Contents

Volume I

Overview of Therapeutic Antibodies \textit{XIX}

A Greeting by the Editor \textit{XXI}

Foreword \textit{XXIII}

List of Authors \textit{XXV}

Introduction

1 \textbf{Therapeutic Antibodies – From Past to Future} 3
\textit{Stefan D"ubel}

1.1 An Exciting Start – and a Long Trek 3
1.2 The Gold Rush 8
1.3 Success and Disappointment 9
1.4 The Gleaming Horizon 14

Further Reading 15
References 15

Part I Selecting and Shaping the Antibody Molecule

2 \textbf{Selection Strategies I: Monoclonal Antibodies} 19
\textit{Gerhard Moldenhauer}

2.1 Introduction 19
2.2 Historical Remarks 20
2.3 Antibody Structure and Function 21
2.3.1 Membrane-bound and Secreted Forms of Antibodies 21
2.3.2 Monoclonal Antibodies 23
2.4 Production of Monoclonal Antibodies 24
2.4.1 Immunization 24
2.4.2 Myeloma Cell Lines 25
2.4.3 Cell Fusion 25
Contents

2.4.4 Drug Selection of Hybridomas 28
2.4.5 Screening Hybridoma Cultures for Specific Antibody 29
2.4.5.1 Enzyme-linked Immunosorbent Assay (ELISA) 29
2.4.5.2 Flow Cytometry 31
2.4.5.3 Immunohistology and ImmunocytoLOGY 31
2.4.5.4 Cytotoxicity Assays 32
2.4.5.5 Screening for Function 32
2.4.6 Cloning 33
2.4.7 Expansion and Freezing of Hybridoma Clones 33
2.5 Purification and Modification of Monoclonal Antibodies 34
2.5.1 Mass Culture and Purification of Monoclonal Antibody 34
2.5.2 Fragmentation of Monoclonal IgG Antibodies 34
2.5.3 Labeling of Monoclonal Antibodies 35
2.6 Monoclonal Antibodies for Tumor Therapy 35
2.6.1 Leukocyte Differentiation Antigens 35
2.6.2 Epithelial Differentiation Antigens 37
2.6.3 Mechanisms of Action of Monoclonal Antibodies 38
2.6.4 Human Monoclonal Antibodies 39
2.7 Outlook 40
References 40

3 Selection Strategies II: Antibody Phage Display 45
Michael Hust, Lars Toleikis and Stefan Dübel

3.1 Introduction 45
3.2 The Phage Display System 48
3.3 Selection and Evaluation of Binders 50
3.4 Phage Display Vectors 52
3.5 Phage Display Libraries 57
3.6 Generation of Phage Display Libraries 61
References 62

4 Selection Strategies III: Transgenic Mice 69
Marianne Brüggemann, Jennifer A. Smith, Michael J. Osborn, and Xiangang Zou

4.1 Introduction 69
4.2 Human Ig Genes and Loci 69
4.2.1 Minigene Constructs 71
4.2.2 Yeast Artificial Chromosomes (YACs) 74
4.2.3 Chromosome Fragments 76
4.3 Transgenic Ig Strains 77
4.3.1 Stability of the Transloci 78
4.3.2 Silenced Endogenous Loci 79
4.3.3 Immune Responses and Affinity of Human Ig 79
4.3.4 Ig Replacement 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Complementary Strategies</td>
<td>84</td>
</tr>
<tr>
<td>4.4.1</td>
<td>H-chain-only Ig</td>
<td>84</td>
</tr>
<tr>
<td>4.4.2</td>
<td>In vivo Mutation</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Outlook</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>87</td>
</tr>
</tbody>
</table>

5 Bioinformatics Tools for Antibody Engineering

Andrew C.R. Martin and James Allen

5.1 Introduction 95
5.1.1 Brief Review of Antibody Structure 95
5.1.2 Conventions Used in this Chapter 96
5.2 Numbering Schemes for Antibodies 96
5.2.1 The Kabat Numbering Scheme 97
5.2.1.1 The Chothia Numbering Scheme 98
5.2.2 The IMGT Numbering Scheme 100
5.2.3 Honegger and Plückthun Numbering Scheme 100
5.3 Definition of the CDRs and Related Regions 100
5.4 Antibody Sequence Data 102
5.4.1 Antibody Sequence Databanks 102
5.4.2 Germline Sequence Databases 103
5.4.3 Web Resources for Sequence Analysis 104
5.4.3.1 Kabat Data 104
5.4.3.2 IMGT Data 105
5.5 Antibody Structure Data 105
5.6 Sequence Families 106
5.6.1 Families and Subgroups 106
5.6.2 Human Family Chronology 107
5.6.2.1 Human Heavy Chain Variable Genes (V_H) 107
5.6.2.2 Human Light Chain Variable Genes (V_{κ} and V_{λ}) 107
5.6.3 Mouse Family Chronology 108
5.6.3.1 Mouse Heavy Chain Variable Genes (V_H) 108
5.6.3.2 Mouse Light Chain Variable Genes (V_{κ} and V_{λ}) 108
5.6.4 Correspondence Between Human and Mouse Families 109
5.6.4.1 Heavy Chain Variable Genes (V_H) 109
5.6.4.2 Light Chain Variable Genes (V_{κ} and V_{λ}) 109
5.6.5 Tools for Assigning Subgroups 110
5.7 Screening new antibody sequences 111
5.8 Antibody Structure Prediction 111
5.8.1 Build the framework 112
5.8.2 Build the CDRs 112
5.8.3 Automated Modeling Tools 112
5.9 Summary 113
5.9 References 113
5.9 Websites 116
5.9 Note added in proof 117
6 Molecular Engineering I: Humanization 119
Jose W. Saldanha
6.1 Introduction 119
6.2 History of Humanization 120
6.3 CDR Grafting 120
6.4 The Design Cycle 122
6.4.1 Analysis of the Source (Donor) Sequence 123
6.4.1.1 Complementarity Determining Regions (CDRs) 123
6.4.1.2 Canonical Residues 123
6.4.1.3 Interface Packing Residues 124
6.4.1.4 Rare Framework Residues 124
6.4.1.5 N- or O-Glycosylation Sites 125
6.4.2 Three-Dimensional Computer Modeling of the Antibody Structure 126
6.4.3 Choice of Human Framework Sequences 128
6.4.3.1 Fixed Frameworks or Best Fit? 128
6.4.3.2 \(V_l/V_h \) Frameworks from the Same or Different Clone? 130
6.4.3.3 Human Subgroup Consensus or Expressed Framework? 131
6.4.3.4 Germline Frameworks 131
6.4.3.5 Database Search 131
6.4.4 Identify Putative Backmutations 132
6.5 Other Approaches to Antibody Humanization 134
6.5.1 Resurfacing/Veneering 134
6.5.2 SDR Transfer 135
6.5.3 Delimmunization Technology 135
6.5.4 Phage Libraries 136
References 137

7 Molecular Engineering II: Antibody Affinity 145
Lorin Roskos, Scott Klakamp, Meina Liang, Rosalin Arends, and Larry Green
7.1 Introduction 145
7.2 Affinity Maturation 145
7.2.1 Maturation In Vivo 145
7.2.2 Maturation In Vitro 147
7.3 Effect of Affinity on Antigen Binding and Antibody Potency 148
7.3.1 Binding and Potency In Vitro 150
7.3.2 Binding and Potency In Vivo 152
7.4 High-Throughput Selection of Hybridomas Secreting High-Affinity Antibodies 154
7.4.1 Soluble Antigens 154
7.4.2 Cell Surface Antigens 157
7.5 Kinetic and Equilibrium Determinations of Antibody Affinity 158
10.5.1 Ready-to-Use Solutions and Concentrates 252
10.5.1.1 Appropriate Excipients 253
10.5.2 Freeze-Dried Powders 255
10.5.2.1 Appropriate Excipients 257
10.5.3 Crystalline Suspensions 258
10.5.4 Carrier-based Systems 259
10.6 Formulation and Manufacturing of Local Delivery Systems 260
10.6.1 Inhalation Powders 260
10.6.1.1 Spray Drying 260
10.6.1.2 Spray Freeze-drying 261
10.6.2 Various Dosage Forms 262
10.7 Outlook 262
References 263

11 Immunogenicity of Antibody Therapeutics 267
Huub Schellekens, Daan Crommelin, and Wim Jiskoot
11.1 Introduction 267
11.2 Assays for Antibodies Induced by Monoclonal Antibodies 268
11.3 Mechanisms of Antibody Induction 269
11.4 Factors Influencing the Immunogenicity 270
11.5 Consequences of the Immunogenicity of Monoclonal Antibodies 272
11.6 Prediction of the Anti-mAb Response 273
11.7 Reduction of Immunogenicity of Monoclonal Antibodies 274
11.8 Conclusion 275
References 275

12 Regulatory Considerations 277
Marjorie A. Shapiro, Patrick G. Swann, and Melanie Hartsough
12.1 Introduction 277
12.2 Regulatory Authority 280
12.3 Chemistry, Manufacturing, and Controls Considerations 282
12.3.1 Cell Line Qualification 282
12.3.2 Quality Control Testing 283
12.3.3 Transmissible Spongiform Encephalopathy (TSE) 285
12.3.4 Product Stability 286
12.3.5 Reference Standard 287
12.3.6 Virus Clearance and Inactivation Studies 287
12.3.7 Abbreviated Product Safety Testing for Feasibility Trials in Serious or Immediately Life-Threatening Conditions 288
12.3.8 Comparability 288
12.4 Considerations for Preclinical Testing 289
12.4.1 Tissue Cross-Reactivity 290
12.4.2 Relevant Species 291
12.4.3 Pharmacodynamic and Pharmacokinetic Studies 291
12.4.4 Toxicology 292
12.4.5 Immunogenicity 295
12.4.6 Comparability 296
12.5 Conclusions 297
References 297

13 Intellectual Property Issues 301
Michael Braunagel and Rathin C. Das
13.1 Introduction 301
13.2 Why Intellectual Property Rights are Important 301
13.3 Recombinant Antibody Technologies 303
13.4 Antibody Humanization 304
13.5 Human Antibody Technology 304
13.6 Antibody Production 311
13.6.1 Genesis of New Cabilly 311
13.6.2 Xoma Patents 313
13.7 Litigations and Cross-licensing 314
13.8 Other Cross-licensing 316
13.9 Litigation between CAT and Abbott 316
13.10 Importation of Data 317
13.11 The Single-Chain Antibody Technology 318
13.13 Conclusion 321

Volume II

Overview of Therapeutic Antibodies XV
A Greeting by the Editor XVII
Foreword XIX
List of Authors XXI

Part III Beyond IgG – Modified Antibodies

1 Immunoscintigraphy and Radioimmunotherapy 325
 Jason L. J. Dearling and Alexandra Huhalov

2 Bispecific Antibodies 345
 Dafne Müller and Roland E. Kontermann

3 Immunotoxins and Beyond: Targeted RNases 379
 Susanna M. Rybak and Dianne L. Newton