Carbon in the Geobiosphere
— Earth’s Outer Shell —

FRED T. MACKENZIE
Department of Oceanography,
School of Ocean and Earth Science and Technology,
University of Hawaii, Honolulu, U.S.A.

ABRAHAM LERMAN
Department of Geological Sciences,
Northwestern University,
Evanston, Illinois, U.S.A.

Springer
Contents

Published Titles in Topics in Geobiology Book Series ii
Aims & Scope Topics in Geobiology Book Series v
Preface vii
Acknowledgements xiii
Picture Credits xvii

1 Brief Overview of Carbon on Earth 1
1 An Unusual Look at Earth’s Shells 2
2 Global Carbon Cycle 7
3 Fundamental Equation of a Cycle and Carbon Flows 14
4 Carbon in Fossil Fuels 18
5 Feedbacks in the Carbon Cycle 21

2 Earth’s Volatile Beginnings 23
1 The Major Volatiles 23
2 Primordial Atmosphere-Ocean System 35
3 Carbon Dioxide 40
4 Summary and Speculations 45
5 An Early Biosphere 49

3 Heat Balance of the Atmosphere and Carbon Dioxide 61
1 Heat Sources at the Earth’s Surface 62
2 Solar Heating and Radiation Balance 63
3 Greenhouse Effect 69
4 Temperature of a Prebiotic Atmosphere 80
5 \(\text{CO}_2 \) and Climate Change 83

4 Mineralogy, Chemistry, and Reaction Kinetics of the Major Carbonate Phases 89
1 Carbonate Minerals 90
2 Calcites 93
3 Dolomite 101
4 Aragonite 105
5 Carbonate Dissolution and Precipitation Kinetics 110
6 Carbonate Precipitation and Dissolution in Marine Ecosystems 115
7 Some Geological Considerations 116

xxiv
5 Carbon Dioxide in Natural Waters 123
 1 Dissolution and Dissociation of CO₂ in Water 124
 2 CO₂ Transfer from Atmosphere to Water 133
 3 Calcite and Aragonite in Natural Waters 137
 4 Degree of Saturation with Respect to Carbonate Minerals 138
 5 CO₂ Phases: Gas, Liquid, Hydrate, Ice 142
 6 Air-Sea CO₂ Exchange due to Carbonate and Organic Carbon Formation 147

6 Isotopic Fractionation of Carbon: Inorganic and Biological Processes 165
 1 Isotopic Species and Their Abundance 165
 2 Isotopic Concentration Units and Mixing 167
 3 Fractionation in Inorganic Systems 170
 4 Photosynthesis and Plant Physiological Responses to CO₂ 174
 5 Isotopic Fractionation and ¹³C Cycle 184
 6 Long-Term Trends 188

7 Sedimentary Rock Record and Oceanic and Atmospheric Carbon 193
 1 Geologic Time Scale and Sedimentary Record 194
 2 The Beginnings of Sedimentary Cycling 195
 3 Broad Patterns of Sediment Lithologies 197
 4 Differential Cycling of the Sedimentary Mass and Carbonates 199
 5 Sedimentary Carbonate System 202
 6 Evaporites and Fluid Inclusions 208
 7 Isotopic Trends 211
 8 Summary of the Phanerozoic Rock Record in Terms of Ocean Composition 220

8 Weathering and Consumption of CO₂ 225
 1 Weathering Source: Sedimentary and Crystalline Lithosphere 226
 2 Dissolution at the Earth’s Surface 232
 3 Mineral-CO₂ Reactions in Weathering 237
 4 CO₂ Consumption from Mineral-Precipitation Model 242
 5 CO₂ Consumption from Mineral-Dissolution Model 247
 6 Environmental Acid Forcing 252

9 Carbon in the Oceanic Coastal Margin 255
 1 The Global Coastal Zone 256
 2 Carbon Cycle in the Coastal Ocean 262
 3 Inorganic and Organic Carbon 267
 4 Marine Calcifying Organisms and Ecosystems 278
 5 Present and Future of the Coastal Ocean Carbon System 284
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Natural Global Carbon Cycle through Time</td>
<td>289</td>
</tr>
<tr>
<td>1</td>
<td>The Hadean to Archean</td>
<td>289</td>
</tr>
<tr>
<td>2</td>
<td>The Archean to Proterozoic</td>
<td>293</td>
</tr>
<tr>
<td>3</td>
<td>The Phanerozoic</td>
<td>297</td>
</tr>
<tr>
<td>4</td>
<td>Pleistocene to Holocene Environmental Change</td>
<td>303</td>
</tr>
<tr>
<td>11</td>
<td>The Carbon Cycle in the Anthropocene</td>
<td>319</td>
</tr>
<tr>
<td>1</td>
<td>Characteristics of the Anthropocene</td>
<td>319</td>
</tr>
<tr>
<td>2</td>
<td>Major Perturbations of the Carbon Cycle: 1850 to the Early 21st Century</td>
<td>321</td>
</tr>
<tr>
<td>3</td>
<td>Partitioning of the Carbon, Nitrogen, and Phosphorus Fluxes</td>
<td>326</td>
</tr>
<tr>
<td>4</td>
<td>The Fundamental Carbon Problem of the Future</td>
<td>336</td>
</tr>
</tbody>
</table>

Bibliographic References 343

Index 383