Biogeochemistry of Trace Elements in the Rhizosphere

Edited by

P.M. Huang
University of Saskatchewan
Saskatoon, Canada

and

G.R. Gobran
Swedish University of Agricultural Sciences
Uppsala, Sweden

2005
TABLE OF CONTENTS

Preface v
About the Editors vii
Contributors ix

PART I. FUNDAMENTALS OF TRANSFORMATIONS AND DYNAMICS OF TRACE ELEMENTS

Chapter 1: Contribution of rhizospheric processes to mineral weathering in forest soils
G.R. Gobran, M.-P. Turpault, and F. Courchesne 3

Chapter 2: Mineral weathering in the rhizosphere of forested soils
V. Séguin, F. Courchesne, C. Gagnon, R.R. Martin, S.J. Naftel, and W. Skinner 29

Chapter 3: Characteristics of rhizosphere soil from natural and agricultural environments
G. Corti, A. Agnelli, R. Cuniglio, M.F. Sanjurjo, and S. Cocco 57

Chapter 4: Metal complexation by phytosiderophores in the rhizosphere
S.M. Reichman and D.R. Parker 129

Chapter 5: Effects of organic ligands on the adsorption of trace elements onto metal oxides and organo–mineral complexes
A. Violante, M. Ricciardella, M. Pigna, and R. Capasso 157

Chapter 6: Kinetics of cadmium desorption from iron oxides formed under the influence of citrate
C. Liu and P.M. Huang 183

Chapter 7: Biogeochemistry of soil cadmium and the impact on terrestrial food chain contamination
G.S.R. Krishnamurti, D.F.E. McArthur, M.K. Wang, L.M. Kozak, and P.M. Huang 197
PART II. SPECIATION, BIOAVAILABILITY, AND PHYTOTOXICITY OF TRACE ELEMENTS

Chapter 8: Speciation and bioavailability of trace metals (Cd, Cu, Ni, Pb, Zn) in the rhizosphere of contaminated soils
P. Legrand, M.-C. Turmel, S. Sauvé, and F. Courchesne

Chapter 9: Influence of willow (*Salix viminalis* L.) roots on soil metal chemistry: Effects of clones with varying metal uptake potential
M. Greger

Chapter 10: Fractionation and bioavailability of copper, cadmium and lead in rhizosphere soil
S. Tao, W.X. Liu, Y.J. Chen, J. Cao, B.G. Li, and F.L. Xu

Chapter 11: Bioavailability and extractability of copper and zinc in a soil amended with pig slurry: Effect of iron deficiency in the rhizosphere of two grasses
S. Thomas, D. Mahammedi, M. Clairotte, M.F. Benedetti, M. Castrec-Rouelle, F. Persin, P. Peu, J. Martinez, and P. Hinsinger

Chapter 12: Binding and electrostatic attraction of trace elements to plant root surfaces
U. Yermiyahu and T.B. Kinraide

Chapter 13: Model development for simulating the bioavailability of Ni to the hyperaccumulator *Thlaspi goesingense*
A. Schnepf, M.L. Himmelbauer, M. Puschenreiter, T. Schrefl, E. Lombi, W.J. Fitz, W. Loiskandl, and W.W. Wenzel

Chapter 14: Effect of arbuscular mycorrhizal (AM) fungi on heavy metal and radionuclide transfer to plants
C. Leyval

Chapter 15: Uptake and translocation of uranium by arbuscular mycorrhizal fungi under monoxenic culture conditions
G. Rufyikiri, Y. Thiry, and S. Declerck

Index

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Speciation and bioavailability of trace metals (Cd, Cu, Ni, Pb, Zn)</td>
<td>P. Legrand, M.-C. Turmel, S. Sauvé, and F. Courchesne</td>
<td>261</td>
</tr>
<tr>
<td>9</td>
<td>Influence of willow (Salix viminalis L.) roots on soil metal chemistry: Effects of clones with varying metal uptake potential</td>
<td>M. Greger</td>
<td>301</td>
</tr>
<tr>
<td>10</td>
<td>Fractionation and bioavailability of copper, cadmium and lead in rhizosphere soil</td>
<td>S. Tao, W.X. Liu, Y.J. Chen, J. Cao, B.G. Li, and F.L. Xu</td>
<td>313</td>
</tr>
<tr>
<td>12</td>
<td>Binding and electrostatic attraction of trace elements to plant root surfaces</td>
<td>U. Yermiyahu and T.B. Kinraide</td>
<td>365</td>
</tr>
<tr>
<td>13</td>
<td>Model development for simulating the bioavailability of Ni to the hyperaccumulator Thlaspi goesingense</td>
<td>A. Schnepf, M.L. Himmelbauer, M. Puschenreiter, T. Schrefl, E. Lombi, W.J. Fitz, W. Loiskandl, and W.W. Wenzel</td>
<td>391</td>
</tr>
<tr>
<td>14</td>
<td>Effect of arbuscular mycorrhizal (AM) fungi on heavy metal and radionuclide transfer to plants</td>
<td>C. Leyval</td>
<td>419</td>
</tr>
<tr>
<td>15</td>
<td>Uptake and translocation of uranium by arbuscular mycorrhizal fungi under monoxenic culture conditions</td>
<td>G. Rufyikiri, Y. Thiry, and S. Declerck</td>
<td>431</td>
</tr>
</tbody>
</table>

Index: 457