Exploiting Chemical Diversity for Drug Discovery

Edited by

Paul A. Bartlett
Department of Chemistry, University of California, Berkeley

Michael Entzeroth
S*Bio Pte Ltd, Singapore

RSC Publishing
# Contents

Section 1  Operational Developments in Chemistry

Chapter 1  The Use of Polymer-Assisted Solution-Phase Synthesis and Automation for the High-Throughput Preparation of Biologically Active Compounds  3  
Steven V. Ley, Mark Ladlow and Emma Vickerstaffe

1  Introduction  3
2  PASP Synthesis Approaches to Biologically Active Compounds  7
   2.1  Applications to the Synthesis of Commercial Drug Molecules  7
   2.2  Applications of PASP to the Synthesis of Biologically Active Natural Products  10
   2.3  PASP Synthesis in the Library Production of Biologically Active Small Molecules  12
3  Automated PASP Synthesis of Biologically Active Molecules  19
   3.1  Stepwise Automation of PASP Synthesis in Batch Mode  19
   3.2  Fully Automated PASP Synthesis of Drug-Like Molecules in Batch Mode  21
   3.3  Flow Chemistry and Automation in the Synthesis of Drug-Like Molecules  23
4  Conclusion  28
References  28

Chapter 2  Accelerated Chemistry: Microwave, Sonochemical, and Fluorous Phase Techniques  33  
Kristofer Olofsson, Peter Nilsson and Mats Larhed

1  Introduction  33
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Microwave Enhanced Chemistry</td>
<td>34</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Applications in Medicinal Chemistry</td>
<td>35</td>
</tr>
<tr>
<td>2.3</td>
<td>Applications in Solid-Phase Chemistry</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Sonochemistry as a Means to Accelerate Synthesis</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Organometallic Sonochemistry</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Heterocyclic and Pericyclic Chemistry</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Applications in Medicinal Chemistry</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Fluorous Phase Techniques</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Reagents, Linkers, and Scavengers</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Fluorous Protecting Groups</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Fluorous Mixture Synthesis</td>
<td>44</td>
</tr>
<tr>
<td>4.5</td>
<td>Peptides and Oligosaccharides</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>Fluorous Applications in High-Throughput Chemistry</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>Microwave-Enhanced Fluorous Chemistry</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>48</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

Section 2  Conceptual Advances in Synthesis:
“Prospecting” – Design of Discovery Libraries and the Search for Hits

Chapter 3  Biosynthesis of “Unnatural” Natural Products 57

*Yi Tang and Chaitan Khosla*

1  Introduction 57
1.1  Polyketide Assembly 58
1.2  Three Major Classes of Polyketide Synthases 60
1.3  Methods for Engineered Biosynthesis 60

2  Type I Polyketide Synthases 61
2.1  Modular Architecture 61
2.2  The Erythromycin Synthase 63
2.3  Engineered Biosynthesis of Multimodal PKS Products 64
2.3.1  Domain Engineering 64
2.3.2  Module Engineering 66
2.3.3  Primer Unit Engineering and Precursor-Directed Biosynthesis 68
2.4  Multimodal PKSs that Exhibit Special Features 70
2.5  Fungal Type I PKSs 70
Contents

3 Type II Polyketide Synthases
  3.1 Dissociated Architecture 72
  3.2 Combinatorial Biosynthesis of
      Type II Polyketides 75
      3.2.1 Chain-Length Variations 76
      3.2.2 Mix and Match of Tailoring Enzymes 76
      3.2.3 Primer Unit Modifications 78
      3.2.4 Reshuffling of Downstream
          Tailoring Enzymes 80

4 Type III Polyketide Synthase 81
  4.1 Type III PKS Consists of a Homodimeric
      Ketosynthase 81
  4.2 Engineered Biosynthesis of Type III Polyketides 84

5 Conclusions 85
Acknowledgments 86
References 86

Chapter 4 Combinatorial Synthetic Design:
The Balance of Novelty and Familiarity 91
A. Ganesan

1 Biological Macromolecules - Strength in Numbers 91
   1.1 Congruence between Biological and
        Chemical Space 93
   1.2 The Libraries are Exhaustive within the
        Defined Boundaries 93
   1.3 Highly Optimized Synthesis Procedures
        were Available 94

2 Oligomer Synthesis - Improving on Mother Nature 94

3 Random, Discovery, or Prospecting Libraries -
   the Quest for the Universal Scaffold 96

4 Privileged Scaffolds - Look Where the
   Light is Brightest 96

5 The Decoration or Synthesis of Novel Scaffolds -
   Aid for the Underprivileged 97

6 Target Class Libraries - Diversity with a Purpose 100

7 Peptide and Nucleotide Libraries Redux 101

8 Lead Discovery or Drug Discovery - Size
   does Matter 102

9 Natural Product Scaffolds for Combinatorial
   Chemistry - Why Reinvent the Wheel? 103

10 From Natural Products to Natural Product-Like
    Libraries - Hubris or Progress? 104
## Lead Discovery and Combinatorial Chemistry – What have We Learned? 105

11.1 The Drug-Discovery Process cannot be Simplified to a Single Blueprint 106

11.2 Combinatorial Chemistry is an Extremely Powerful Technology 106

11.3 Combinatorial Chemistry is at its Best in Lead Optimization 107

11.4 Combinatorial Chemistry is about Making the Compounds that Fit Your Needs, not How They are Made 107

### References 107

---

**Chapter 5** Compound Collections: Acquisition, Annotation, and Access 112

*Reg Richardson*

1 Introduction 112

2 Commercial Offerings 113

3 Companies Providing Non-Proprietary, Non-Parallel Synthesised Libraries (Shared-Pool/‘Collected Collections’) 115

4 Companies Providing In-House Designed, Parallel Synthesised Libraries 117

5 Compound Selection and Database Filtering 119

6 Sub-structure Similarity/Dissimilarity 119

7 Pharmacophore Analysis 120

8 Annotation 124

9 Lipinski Rule-of-Five (LRoF) 126

10 Topological Polar Surface Area (tPSA) and Blood–Brain-Barrier Permeability (Log BB) 126

11 Solubility 128

12 Examples of the Use of Chemical Annotation and Pharmacophore-Based Lead-Hopping 129

13 Compound Acquisition 132

Acknowledgments 134

References 134

---

**Chapter 6** Chemical Diversity: Definition and Quantification 137

*Alan C. Gibbs and Dimitris K. Agrafiotis*

1 Introduction 137
Section 3  Conceptual Advances in Synthesis:
"Mining" – Turning a Hit into a Lead

Chapter 7  Focused Libraries: The Evolution in Strategy
from Large-Diversity Libraries to the
Focused Library Approach  163

Ruben Tommasi and Ivan Cornella

1  Introduction  163
2  A Synergistic, Multidisciplinary Approach to
Library Conception  164
   2.1  Improvements in Synthetic Methods  164
   2.2  Impact of In Silico Tools for Library Design  165
   2.3  Influence of Biology in Library Design  166
3  Library Design Concepts  167
   3.1  Impact of Diversity on Library Design  167
   3.2  Diversity-Oriented Synthesis in Prospecting
Library Design  168
   3.3  Target-Oriented Library Design  168
   3.4  Focus on Drug-Like Libraries  170
Chapter 8  Translating Peptides into Small Molecules  
Gerd Hummel, Ulrich Reineke and Ulf Reimer

1  Peptides as Drugs: The Good, the Bad and the Ugly  184
2  Origin of Biologically Active Peptides  185
3  General Strategy for Translating Peptides into Small Molecules  186
4  Tailoring Peptide Sequences for their Translation into Small Molecules  186
5  Transformation of Peptide Ligands into Small Molecules using Computational Approaches  191
6  Conclusion  198
References  198

Section 4  Operational Developments in Screening and High Throughput Assays

Chapter 9  High-Density Plates, Microarrays, Microfluidics  
Christof Fattinger and Gregor Dernick

1  Functional High-Density Well Plates for High-Throughput Assays  204
1.1 Sample Plates for Low-Volume High-Throughput Screening  205
1.2 High-Density Assay Plates for HTS and Multidimensional Compound Profiling  206
1.3 Technical, Biological, and Economical Limits for Assay Miniaturization in High-Density Plates  208
1.4 384-Microtube Plate for High-Throughput Retrieval of Compound Subsets  210
1.5 Sample Management for HTS and Multidimensional Compound Profiling  211
Chapter 10  Fluorescence Technologies for the Investigation of Chemical Libraries  233
Eric Trinquet and Gérard Mathis
1 Introduction 233
2 Dissociation-Enhanced Lanthanide Fluoroimmunoassay 234
3 Enzyme Fragment Complementation 236
4 Fluorescence Polarization 236
5 Fluorescence Correlation Spectroscopy 238
6 Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen™) 238
7 Fluorescence Resonance Energy Transfer 239
8 Bioluminescence Resonance Energy Transfer 241
9 Homogeneous Time Resolved Fluorescence 241
10 Conclusion 244
References 245

Chapter 11  The Use of Genetically Engineered Cell-Based Assays in in-vitro Drug Discovery  247
Renate Schnitzer and Wolfgang Sommergruber
1 Introduction 247
2 Genetic Engineering for Cell-Based Assays 248
   2.1 Expression Systems 248
   2.2 Choice of Cell Line and Promoter 249
   2.3 Chromosomal Integration Site 250
3 Reporter-Based Assays 250
   3.1 Chloramphenicol Acetyl Transferase, Secreted Placental Alkaline Phosphatase, β-Galactosidase 251
1.2 Spotting of Pre-Synthesized Small Molecules and Peptides 293
1.3 Carbohydrate Microarrays 293
1.4 One-Bead-One-Compound Combinatorial Library Bead-Arrays 294

2 Screening of Chemical Microarrays 295
2.1 Labeling Methods 296
2.1.1 Fluorescence Method 296
2.1.2 Chemiluminescence Method 297
2.1.3 Radiolabeling Methods 297
2.1.4 Colorimetric Methods 297
2.2 Label-Free Optical and Mass Spectrometry Methods 298
2.2.1 Surface Plasmon Resonance 298
2.2.2 Oblique-Incidence Optical Reflectivity Difference Microscopy 298
2.2.3 Surface-Enhanced Laser Desorption/Ionization Mass Spectrometry 298
2.2.4 Atomic Force Microscopy 299
2.2.5 Fiber-Optic Bead Methods 299
2.2.6 Laser-Detection Methods 299
2.2.7 Electrochemical Biosensor Method 299
2.2.8 Cell-Based Assays 300

3 Applications of Chemical Microarrays 300
3.1 Basic Science Applications 301
3.1.1 Protein-Binding Arrays 301
3.1.2 Carbohydrate Microarrays for Cell Receptors 302
3.1.3 Cell-Signaling Arrays 302
3.1.4 Enzyme Substrate/Inhibitor Arrays 303
3.1.5 Chemical-Detection Arrays 303
3.2 Medical Applications 304
3.2.1 Diagnostic Arrays 304
3.2.2 Immunological Arrays 304
3.2.3 Cell-Binding Arrays 305
3.2.4 Drug-Discovery Arrays 305

4 Conclusion 306
Acknowledgments 306
References 307
Section 5  Conceptual Advances in Lead Evaluation: Screen Early and Often

Chapter 14  Screen/Counter-Screen: Early Assessment of Selectivity 315
Martyn N. Banks, Litao Zhang and John G. Houston

1 Introduction 315
2 Approaches Used for Selection of Drug Candidates 317
   2.1 Lead Evaluation and Liability Profiling 317
      2.1.1 ADME Liability Profiling 318
      2.1.2 The Lead Evaluation Process: Technologies and Methods 319
   2.2 Specificity of Drug Candidates and the Construction of In Vitro Specificity Panels 323
      2.2.1 Receptors 323
      2.2.2 Protein Kinases 328
      2.2.3 Ion Channels 331

3 Summary 332
References 332

Chapter 15  Concepts for In Vitro Profiling: Drug Activity, Selectivity and Liability 336
Michael B. Bolger, Robert Fraczkiewicz, Michael Entzeroth and Boyd Steere

1 Introduction 336
2 Physicochemical Parameters 339
   2.1 Partition Coefficient 339
   2.2 pK_{a} 340
   2.3 Solubility 343
      2.3.1 Thermodynamic Solubility 343
      2.3.2 To Buffer or not to Buffer 345

3 Permeability 348
4 Metabolism 350
5 Protein Binding 353
6 Toxicity 354
   6.1 Cell Viability: MTS Assay for In Vitro Cytotoxicity 355
   6.2 Membrane Damage: Release of LDH (Lactate Dehydrogenase) 355
   6.3 Induction of Apoptosis: Caspase Activity 355
   6.4 HERG Potassium Channel Interaction 355
Chapter 16  In Silico Surrogates for In Vivo Properties: Profiling for ADME and Toxicological Behavior
Michael B. Bolger, Robert Fraczkiewicz and Boyd Steere

1 In Silico Surrogates for In Vivo Properties 364
1.1 Molecular Descriptor Generation 365
1.2 Modeling Methods 366
1.3 Multiple Linear Regression 366
1.4 Partial Least Squares 367
1.5 Artificial Neural Network 367
1.6 Support Vector Machines 368

2 Estimation of Biopharmaceutical Properties 369
2.1 Partition Coefficient 369
2.2 pK_a 369
2.3 Permeability 374
2.4 Solubility 374
2.5 Protein Binding 376

3 Estimation of Pharmacokinetic Properties 377
3.1 Clearance 377
3.2 Volume of Distribution 377
3.3 Metabolism 378

4 Estimation of Toxicological Properties 379

5 Integration of Surrogate Data and Estimations with Physiological Simulation 380

References 381

Chapter 17 Uses of High Content Screening in Chemical Optimization
Francesca Casano, Zhuyin Li and Tina Garyantes

1 Introduction 386
2 When is HCS Used 387
3 HCS Systems 388
3.1 Limitations of HCS 388
3.2 How to Pick an HCS System 389
4 Examples Show the Power of HCS

4.1 Example 1: NF-κB Nuclear Translocation Assay (from Prelux) 390

4.2 Example 2: Characterization of Apoptosis Pathways Using High-Throughput Image-Based Assays (from Prelux) 394

4.3 Example 3: Gap Junction Inhibitors (from sanofi-aventis) 400

5 Summary 402
References 404

Subject Index 405