POWER-SWITCHING CONVERTERS
Medium and High Power

By Dorin O. Neacsu
Table of Contents

Chapter 1 Introduction to Medium- and High-Power Switching Converters ... 1
1.1 Market for Medium- and High-Power Converters, 1
1.2 Adjustable Speed Drives, .. 6
1.2.1 AC/DC Converter, ... 6
1.2.2 Intermediate Circuit, ... 7
1.2.3 DC Capacitor Bank .. 8
1.2.4 Soft-Charge Circuit ... 8
1.2.5 DC Reactor ... 9
1.2.6 Brake Circuit ... 9
1.2.7 Three-Phase Inverter .. 10
1.2.8 Protection Circuits .. 10
1.2.9 Sensors ... 10
1.2.10 Motor Connection .. 10
1.2.11 Controller .. 11
1.3 Grid Interfaces or Distributed Generation 12
1.3.1 Grid Harmonics .. 13
1.3.2 Power Factor .. 13
1.3.3 DC Current Injection .. 13
1.3.4 Electro-Magnetic Compatibility and Electro-Magnetic Influence .. 14
1.3.5 Frequency and Voltage Variations 15
1.3.6 Maximum Power Connected at Low-Voltage Grid 15
1.4 Multi-Converter Power Electronic Systems 16
1.5 Conclusion ... 17
References ... 17

Chapter 2 High-Power Semiconductor Devices 19
2.1 A View of the Power Semiconductor Market 19
2.2 Power MOSFETs .. 21
2.2.1 Operation ... 21
2.2.2 Control ... 26
2.3 Insulated Gate Bipolar Transistors ... 27
2.3.1 Operation ... 27
2.3.2 Control, Gate-Drivers .. 28
2.3.3 Protection ... 30
4.3 PWM Used within Volt/Hertz Drives: Choice of Number
of Pulses Based on the Desired Current Harmonic Factor
4.3.1 Operation in the Low-Frequencies Range
(Below Nominal Frequency)
4.3.2 High Frequencies (>60 Hz)
4.4 Implementation of Harmonic Reduction with Carrier PWM
4.5 Limits of Operation: Minimum Pulse Width
4.5.1 Avoiding Pulse Dropping by Harmonic Injection
4.6 Limits of Operation
4.6.1 Deadtime
4.6.2 Zero Current Clamping
4.6.3 Overmodulation
4.6.3.1 Voltage Gain Linearization
4.7 Conclusion
4.8 Problems
References

Chapter 5 Vectorial Pulse Width Modulation for Basic
Three-Phase Inverters
5.1 Review of Space Vector Theory
5.1.1 History and Evolution of the Concept
5.1.2 Theory: Vectorial Transforms and Advantages
5.1.2.1 Clarke Transform
5.1.2.2 Park Transform
5.1.3 Application to Three-Phase Control Systems
5.2 Vectorial Analysis of the Three-Phase Inverter
5.2.1 Mathematical Derivation of the Current Space Vector
Trajectory in the Complex Plane for Six-Step Operation
(with Resistive and Resistive-Inductive Loads)
5.2.2 Definition of Flux of a (Voltage) Vector and
Ideal Flux Trajectory
5.3 SVM Theory: Derivation of the Time Intervals Associated
to the Active and Zero States by Averaging
5.4 Adaptive SVM: DC Ripple Compensation
5.5 Link to Vector Control: Different Forms and Expressions
of Time Interval Equations in the (d, q) Coordinate System
5.6 Definition of the Switching Reference Function
5.7 Definition of the Switching Sequence
5.7.1 Continuous Reference Function: Different
Methods
5.7.1.1 Direct-Inverse SVM
5.7.2 Discontinuous Reference Function for Reduced
Switching Loss
Chapter 6 Practical Aspects in Building Three-Phase Power Converters

6.1 Selection of the Power Devices in a Three-Phase Inverter
 6.1.1 Motor Drives
 6.1.1.1 Load Characteristics
 6.1.1.2 Maximum Current Available
 6.1.1.3 Maximum Apparent Power
 6.1.1.4 Maximum Active (Load) Power
 6.1.2 Grid Applications

6.2 Protection
 6.2.1 Overcurrent
 6.2.2 Fuses
 6.2.3 Overtemperature
 6.2.4 Overvoltage
 6.2.5 Snubber Circuits
 6.2.5.1 Theory
 6.2.5.2 Component Selection
 6.2.5.3 Undeland Snubber Circuit
 6.2.5.4 Regenerative Snubber Circuits for Very Large Power
 6.2.5.5 Resonant Snubbers
 6.2.5.6 Active Snubbing
 6.2.6 Gate Driver Faults

6.3 System Protection Management

6.4 Reduction of Common-Mode EMI through Inverter Techniques

6.5 Typical Building Structures of Conventional Inverters Depending on Power Level
 6.5.1 Packages for Power Semiconductor Devices
 6.5.2 Converter Packaging

6.6 Thermal Management
 6.6.1 Transient Thermal Impedance

6.7 Conclusion

6.8 Problems

References
Chapter 7 Implementation of Pulse Width Modulation Algorithms

7.1 Analog Pulse Width Modulation Controllers
7.2 Mixed-Mode Motor Controller ICs
7.3 Digital Structures with Counters: FPGA Implementation
 7.3.1 Principle of Digital PWM Controllers
 7.3.2 Bus Compatible Digital PWM Interfaces
 7.3.3 FPGA Implementation of Space Vector Modulation Controllers
 7.3.4 Deadtime Digital Controllers
7.4 Markets for General-Purpose and Dedicated Digital Processors
 7.4.1 History of Using Microprocessors/Microcontrollers in Power Converter Control
 7.4.2 DSPs Used in Power Converter Control
 7.4.3 Parallel Processing in Multi-Processor Structures
7.5 Software Implementation in Low-Cost Microcontrollers
 7.5.1 Software Manipulation of Counter Timing
 7.5.2 Calculation of Time Interval Constants
7.6 Microcontrollers with Power Converter Interfaces
7.7 Motor Control Co-Processors
7.8 Using the Event Manager within Texas Instrument's DSPs
 7.8.1 Event Manager Structure
 7.8.2 Software Implementation of Carrier-Based PWM
 7.8.3 Software Implementation of SVM
 7.8.4 Hardware Implementation of SVM
 7.8.5 Deadtime
 7.8.6 Individual PWM Channels
7.9 Conclusion
References

Chapter 8 Practical Aspects of Implementing Closed-Loop Current Control

8.1 Role and Schematics
8.2 Current Measurement: Synchronization with Pulse Width Modulation
 8.2.1 Shunt Resistor
 8.2.2 Hall-Effect Sensors
 8.2.3 Current-Sensing Transformer
 8.2.4 Synchronization with PWM
8.3 Current Sampling Rate: Oversampling
8.4 Current Control in (a,b,c) Coordinates
8.5 Current Transforms (3->2): Software Calculation of Transforms
8.6 Current Control in (d,q) Models: PI Calibration
8.7 Antiwind-Up Protection: Output Limitation and Range Definition
8.8 Conclusion ... 229
References ... 229

Chapter 9 Resonant Three-Phase Converters 231
9.1 Reducing Switching Losses through Resonance vs. Advanced
 Pulse Width Modulation Devices 231
9.2 Do We Still Get Advantages from Resonant
 High-Power Converters? .. 234
9.3 Zero Voltage Transition of IGBT Devices 237
 9.3.1 Power Semiconductor Devices under Zero
 Voltage Switching 237
 9.3.2 Step-Down Conversion 240
 9.3.3 Step-Up Power Transfer 245
 9.3.4 Bi-Directional Power Transfer 247
9.4 Zero Current Transition of IGBT Devices 249
 9.4.1 Power Semiconductor Devices under Zero
 Current Switching 249
 9.4.2 Step-Down Conversion 252
 9.4.3 Step-Up Conversion 255
9.5 Possible Topologies of Quasi-Resonant Converters 258
 9.5.1 Pole Voltage .. 258
 9.5.2 Resonant DC Bus 258
9.6 Special PWM for Three-Phase Resonant Converters 260
9.7 Problems .. 261
References .. 261

Chapter 10 Component-Minimized Three-Phase Power Converters 263
10.1 Solutions for Reduction of Number of Components 263
 10.1.1 New Inverter Topologies 263
 10.1.2 Direct Converters 267
10.2 Generalized Vector Transform 272
10.3 Vectorial Analysis of the B4 Inverter 276
10.4 Definition of PWM Algorithms for the B4 Inverter 281
 10.4.1 Method 1 ... 281
 10.4.2 Method 2 ... 282
 10.4.3 Comparative Results 282
10.5 Influence of DC Voltage Variations and Method for Their
 Compensation .. 284
10.6 Two-Leg Converter Used in Feeding a Two-Phase
 Induction Machine ... 285
10.7 Conclusion .. 286
10.8 Problems .. 287
References .. 287
Chapter 11 AC/DC Grid Interface Based on the Three-Phase Voltage Source Converter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Particularities, Control Objectives, and Active Power Control</td>
<td>291</td>
</tr>
<tr>
<td>11.2 PWM in the Control System</td>
<td>294</td>
</tr>
<tr>
<td>11.2.1 Single-Switch Applications</td>
<td>294</td>
</tr>
<tr>
<td>11.2.2 Six-Switch Converters</td>
<td>307</td>
</tr>
<tr>
<td>11.3 Closed-Loop Current Control Methods</td>
<td>310</td>
</tr>
<tr>
<td>11.3.1 Introduction</td>
<td>310</td>
</tr>
<tr>
<td>11.3.2 PI Current Loop</td>
<td>311</td>
</tr>
<tr>
<td>11.3.3 Transient Response Times</td>
<td>312</td>
</tr>
<tr>
<td>11.3.4 Limitation of the (v_d, v_q) Voltages</td>
<td>313</td>
</tr>
<tr>
<td>11.3.5 Minimum Time Current Control</td>
<td>314</td>
</tr>
<tr>
<td>11.3.6 Cross-Coupling Terms</td>
<td>314</td>
</tr>
<tr>
<td>11.3.7 Application of the Whole Available Voltage on the d-Axis</td>
<td>316</td>
</tr>
<tr>
<td>11.3.8 Switch Table and Hysteresis Control</td>
<td>318</td>
</tr>
<tr>
<td>11.3.9 Phase Current Tracking Methods</td>
<td>319</td>
</tr>
<tr>
<td>11.4 Grid Synchronization</td>
<td>325</td>
</tr>
<tr>
<td>11.6 Problems</td>
<td>327</td>
</tr>
<tr>
<td>References</td>
<td>328</td>
</tr>
</tbody>
</table>

Chapter 12 Parallel and Interleaved Power Converters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Comparison between Converters Built of High-Power Devices and</td>
<td>331</td>
</tr>
<tr>
<td>Solutions Based on Multiple Parallel Lower-Power Devices</td>
<td></td>
</tr>
<tr>
<td>12.2 Hardware Constraints in Paralleling IGBTs</td>
<td>333</td>
</tr>
<tr>
<td>12.3 Gate Control Designs for Equal Current Sharing</td>
<td>338</td>
</tr>
<tr>
<td>12.4 Advantages and Disadvantages of Paralleling Inverter Legs in</td>
<td>338</td>
</tr>
<tr>
<td>Respect to Using Parallel Devices</td>
<td></td>
</tr>
<tr>
<td>12.4.1 Inter-Phase Reactors</td>
<td>339</td>
</tr>
<tr>
<td>12.4.2 Control System</td>
<td>340</td>
</tr>
<tr>
<td>12.4.3 Converter Control Solutions</td>
<td>340</td>
</tr>
<tr>
<td>12.4.4 Current Control</td>
<td>342</td>
</tr>
<tr>
<td>12.4.5 Small-Signal Modeling for ((d, q)) Control in a Parallel</td>
<td>343</td>
</tr>
<tr>
<td>Converter System</td>
<td></td>
</tr>
<tr>
<td>12.4.6 ((d, q)) versus ((d, q, 0)) Control</td>
<td>346</td>
</tr>
<tr>
<td>12.5 Interleaved Operation of Power Converters</td>
<td>347</td>
</tr>
<tr>
<td>12.6 Circulating Currents</td>
<td>349</td>
</tr>
<tr>
<td>12.7 Selection of the PWM Algorithm</td>
<td>351</td>
</tr>
<tr>
<td>12.8 System Controller</td>
<td>352</td>
</tr>
<tr>
<td>12.9 Conclusion</td>
<td>354</td>
</tr>
</tbody>
</table>