Contents

Contributors xi
Foreword xv
Preface xvii
About the Editors xix

Section I: Conceptual and Technical Issues

1. Reliability Theory of Aging and Longevity 3
 Leonid A. Gavrilov and Natalia S. Gavrilova
 I. Introduction 3
 II. General Overview of the Reliability Theory Approach 5
 III. Mortality, Failure, and Aging in Biological and Technical Systems 15
 IV. Explanations of Aging Phenomena Using Reliability Theory 21
 V. The Idea of High Initial Damage Load: The HIDL Hypothesis 24
 VI. Reliability Models of Aging for Biological Systems 28
 VII. Evolution of Species Reliability 31
 VIII. Conclusions 34
 References 35

2. Are Age-Associated Diseases an Integral Part of Aging? 43
 Edward J. Masow
 I. Introduction 43
 II. Concepts of Biological Gerontology 44
 III. Age-Associated Diseases 45
 IV. Primary Aging, Secondary Aging, and "Normal Aging" 46
 V. Evolutionary Theory and Age-Associated Diseases 49
 VI. Analysis of Two Major Age-Associated Disease Processes 50
 VII. Summary and Conclusions 55
 References 56

3. Dietary Restriction, Hormesis, and Small Molecule Mimetics 63
 David A. Sinclair and Konrad T. Howitz
 I. Introduction 63
 II. Key Discoveries 65
 III. Physiological Effects of DR on Mammals 68
IV. Mechanisms of DR 70
V. Small-Molecule CR Mimetics 82
VI. Conclusions 89
 References 90

4. Hematopoietic Stem Cells, Aging, and Cancer 105
 Deborah R. Bell and Gary Van Zant
 I. Stem Cells 105
 II. Stem Cell Aging 108
 III. Stem Cells and Cancer 115
 IV. Conclusions 119
 References 119

5. Mitochondria: A Critical Role in Aging 124
 Tamara R. Golden, Karl Morten, Felicity Johnson, Enrique Samper,
 and Simon Melov
 I. The Mitochondrion 124
 II. Evidence for Increased Oxidative Damage to Mitochondrial Components
 with Age 125
 III. Mitochondrial Dysfunction and Aging 129
 IV. Mitochondrial Dysfunction and Age-Associated Disease 134
 V. Conclusions 137
 References 137

6. P53 and Mouse Aging Models 149
 Catherine Gatza, George Hinkal, Lynette Moore, Melissa Dumble, and
 Lawrence A. Donehower
 I. Introduction to p53 149
 II. p53 and Cellular Senescence 151
 III. Linkage of IGF-1, Sir2, and p53 Signaling 154
 IV. Mouse Models of Aging 155
 V. Mouse Models of Accelerated Aging 158
 VI. Mouse Models of Delayed Aging 161
 VII. Links to p53 in Mouse Aging Models 162
 VIII. Mutant Mouse p53 Models, Aging, and Cancer 164
 IX. Influence of p53 on Longevity in Humans 168
 X. How Might p53 Influence Organismal Aging? 169
 References 171

7. Complex Genetic Architecture of Drosophila Longevity 181
 Trudy F. C. Mackay, Natalia V. Roshina, Jeff W. Leips, and
 Elena G. Pasyukova
 I. Introduction 181
 II. Genome Scan for Quantitative Trait Loci (QTLs) 182
 III. Deficiency Complementation Mapping 187
 IV. Complementation Tests to Mutations at Positional Candidate Genes 193
 V. Linkage Disequilibrium (LD) Mapping 207
 VI. Conclusions and Future Prospects 209
 References 212
8. Evolutionary Biology of Aging: Future Directions 217
 Daniel E. L. Piomislow, Kenneth M. Fedorka, and Joep M. S. Burger
 I. Introduction 217
 II. Genetics of Senescence 220
 III. From Physiology to Demography 224
 IV. Parasites and Immune Function 227
 V. Sex, Sexual Selection, and Sexual Conflict 230
 VI. Genetic Variation in Natural Populations 232
 VII. Conclusions 234
 References 235

9. Senescence in Wild Populations of Mammals and Birds 243
 Anja K. Brunet-Rossinni and Steven N. Austad
 I. Introduction 243
 II. Evidence of Senescence in Wild Populations 244
 III. Patterns of Senescence 255
 IV. Methodological Difficulties in Evaluating Senescence in Wild Populations 257
 References 261

10. Biodemography of Aging and Age-Specific Mortality in Drosophila melanogaster 267
 James W. Curtsinger, Natalia S. Gavrilova, and Leonid A. Gavrilov
 I. Introduction 267
 II. Experimental Evidence for Age-Specific Effects 276
 III. Leveling-Off of Mortality Rates 280
 IV. Conclusions 289
 References 289

11. Microarray Analysis of Gene Expression Changes in Aging 295
 F. Noel Hudson, Matt Kaeberlein, Nancy Linford, David Pritchard, Richard Beyer, and Peter S. Rabinovitch
 I. Introduction 295
 II. Technical Issues 295
 III. Biological Studies 310
 IV. Conclusions, Future Directions, and Challenges 326
 References 327

12. Computer Modeling in the Study of Aging 334
 Thomas B. L. Kirkwood, Richard J. Boys, Colin S. Gillespie, Carole J. Procter, Daryl P. Shanley, and Darren J. Wilkinson
 I. Introduction 334
 II. Why Aging Particularly Needs Models 337
 III. Different Approaches to Modeling Biological Systems 339
 IV. Currently Available Models of Aging 343
 V. Models, Data Collection, and Experimental Design 347
 VI. Parameter Inference 348
 VII. Conclusions 351
 References 352
Section II: Non-Mammalian Models

13. Dissecting the Processes of Aging Using the Nematode Caenorhabditis elegans
 Samuel T. Henderson, Shane L. Rea, and Thomas E. Johnson
 I. Introduction 360
 II. Biology of C. elegans 362
 III. The age-1 Pathway 362
 IV. Mutations in Mitochondrial Components 372
 V. Caloric Restriction 379
 VI. Other Non-Genetic Ways to Extend Life 382
 VII. Other Discoveries 384
 VIII. Summary 389
 References 390

14. Genetic Manipulation of Life Span in Drosophila Melanogaster
 Daniel Ford and John Tower
 I. Introduction 400
 II. Genetic Methods for Manipulating Drosophila Life Span 400
 III. Screening for Drosophila Genes Affecting Life Span 405
 IV. Specific Genes Used to Extend the Life Span of Drosophila melanogaster 406
 V. Conclusions 412
 References 412

15. Juvenile and Steroid Hormones in Drosophila melanogaster Longevity
 Meng-Ping Tu, Thomas Flatt, and Marc Tatar
 I. Introduction 415
 II. JH and 20E: Two Major Insect Hormones 416
 III. Effects of JH and 20E on Drosophila Aging 418
 IV. Candidate Genes Affecting Life Span Through JH and 20E Signaling 422
 V. Hormones, Nutrition, and Life Span 433
 VI. Hormonal Effects on Stress Resistance and Immunity 436
 VII. Conclusions 437
 References 440

 Steven N. Austad and Andrej Podlutsky
 I. Introduction 449
 II. Key Evolutionary Relationships 451
 III. Genomic Properties 452
 IV. Physiological and Pathophysiological Properties 456
 V. Empirically Investigating the Similarities and Differences Among Model Organisms 460
 VI. Conclusions 462
 References 463
Section III: Mammalian Models

17. Differential Aging Among Skeletal Muscles 470
 Roger J. M. McCartei
 I. Introduction 470
 II. Changes in Muscle Mass and Composition 472
 III. Loss of Motor Units with Age 476
 IV. Altered Neuromuscular Junctions with Age 479
 V. Excitation-Contraction Coupling 480
 VI. Mechanical Properties 481
 VII. Biochemical Environment 490
 VIII. Conclusions 491
 References 493

18. Aging, Body Fat, and Carbohydrate Metabolism 498
 Marielisa Rincon, Radhika Mazumdar, and Nir Barzilai
 I. Introduction 498
 II. Carbohydrate Metabolism and Body Composition in Aging 498
 III. Conclusions 505
 References 505

 Richard A. Miller and Steven N. Austad
 I. Introduction 512
 II. Body Size and Aging in Dogs 512
 III. Weight and Longevity in Mice 515
 IV. Anecdotal Size-Longevity Reports on Horses 520
 V. Height and Longevity in Humans 520
 VI. Nutritional Manipulations that Modulate Longevity and Body Size 523
 VII. Relation of Size to Longevity Among Different Species 524
 VIII. General Discussion: Why Do Big Dogs Die Young, and Is It Worth Figuring This Out? 526
 IX. Conclusions 529
 References 529

20. Growth Hormone, Insulin-Like Growth Factor-1, and the Biology of Aging 534
 Christy S. Carter and William E. Sonntag
 I. Introduction 534
 II. Biological Actions of Growth Hormone 535
 III. Aging and the Growth Hormone Axis 538
 IV. Studies of Growth Hormone/IGF-1 Replacement 540
 V. Growth Hormone, IGF-1, and Life Span 549
 VI. Pleiotropic Effects of Growth Hormone and IGF-1 556
 VII. Conclusion 557
 References 558
21. Aging of the Female Reproductive System 570
Phyllis M. Wise

I. Introduction 570
II. Menopause 570
III. Definitions 572
IV. Role of the Ovary in Reproductive Aging 574
V. Role of the Central Nervous System in Female Reproductive Aging 579
VI. Conclusion 586
References 586

Author Index 591
Subject Index 645