Ligand Design
for C Protein-coupled Receptors

Edited by
Didier Rognan
Contents

Preface \hspace{1em} \textit{XIII}

1 C Protein-coupled Receptors in the Human Genome \hspace{1em} 1
\hspace{1em} \textit{Robert Fredriksson and Helgi B. Schiöth}

1.1 Introduction \hspace{1em} 1

1.2 The Adhesion Family \hspace{1em} 2

1.3 The Secretin Family \hspace{1em} 5

1.4 The Frizzled/Taste 2 Family \hspace{1em} 5

1.4.1 The Frizzled Receptor Cluster \hspace{1em} 6

1.4.2 The Taste 2 Receptor Cluster \hspace{1em} 8

1.5 The Glutamate Family \hspace{1em} 8

1.6 The Rhodopsin Family \hspace{1em} 11

1.6.1 The Rhodopsin a-Group \hspace{1em} 11

1.6.1.1 The Prostaglandin Receptor Cluster \hspace{1em} 11

1.6.1.2 The Amine Receptor Cluster \hspace{1em} 12

1.6.1.3 The Opsin Receptor Cluster \hspace{1em} 13

1.6.1.4 The Melatonin Receptor Cluster \hspace{1em} 14

1.6.1.5 The MECA Receptor Cluster \hspace{1em} 14

1.6.1.6 Other Rhodopsin a-Receptors \hspace{1em} 14

1.6.2 Rhodopsin p-Group \hspace{1em} 15

1.6.3 Rhodopsin y-Group \hspace{1em} 15

1.6.3.1 The SOG Receptor Cluster \hspace{1em} 16

1.6.3.2 The Melanocyte Concentrating Hormone Receptor Cluster \hspace{1em} 17

1.6.3.3 The Chemokine Receptor Cluster \hspace{1em} 18

1.6.3.4 Other Rhodopsin y-Receptors \hspace{1em} 18

1.6.4 The Rhodopsin 5-Group \hspace{1em} 18

1.6.4.1 The MAS-related Receptor Cluster \hspace{1em} 18

1.6.4.2 The Glycoprotein Receptor Cluster \hspace{1em} 20

1.6.4.3 The Coagulation Factor Receptor Cluster \hspace{1em} 20

1.6.4.4 The Purinergic Receptor Cluster \hspace{1em} 20

1.6.4.5 The Olfactory Receptor Cluster \hspace{1em} 20

1.6.4.6 Other Rhodopsin a-Receptors \hspace{1em} 20
4.4 Agonists Activate Class C GPCRs by Stabilizing the Closed State of the VFT 67
4.5 Dimeric Functioning of the Dirtier of VFTs 68
4.5.1 Agonist Stoichiometry: Symmetry or Asymmetry? 70
4.6 The Heptahelical Domain, the Target of Positive and Negative Allosteric Modulators, Behaves in a Manner Similar to Rhodopsin-like Class A GPCRs 71
4.7 Allosteric Coupling Between the Extracellular and Heptahelical Domains within the Dimer 73
4.7.1 Molecular Determinants of the Coupling Between the VFT and the HD 73
4.7.2 Cis- and Trans-activation Can Exist within Class C GPCRs 74
4.8 Asymmetric Functioning of the HD Dimer 75
4.9 Conclusion 76
References 77

5 Molecular Mechanisms of CPCR Activation 83
Robert P. Bywater and Paul Denny-Coulson
5.1 Structure of G Protein-coupled Receptors 83
5.2 Activation of GPCRs by Endogenous Ligands: The Concept of Receptor Agonism 84
5.3 Distinction Between Orthosteric and Allosteric Ligands 84
5.4 Only a Few Receptor Types are Known to Possess an Endogenous Antagonist 85
5.5 Constitutively Active GPCRs 86
5.6 Mechanism of GPCR Activation: The Active/Inactive "Switch" 86
5.7 GPCR Dimerization 88
5.8 Activation of G Proteins 89
5.9 Interaction Between GPCRs and G Proteins 90
5.10 Conclusions 91
References 92

6 Allosteric Properties and Regulation of C Protein-coupled Receptors 99
Jean-Luc Calzi, Emetine Maillet, Sandra Lecat, Muriel Hachet-Haas, Jacques Haiech, Marcel Hibert, and Brigitte Ilien
6.1 Introduction 99
6.2 Multiple Conformations and Signaling Pathways of G Protein-coupled Receptors 101
6.2.1 Biophysical Approaches to Monitoring Conformational Changes of G Protein-coupled Receptors 102
6.3 Allosteric Modulators of G Protein-coupled Receptors 105
6.4 Where Do Allosteric Modulators Bind on GPCRs? 107
6.5 Future Challenges for Allosteric Modulation of GPCRs 111
References 112
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Chemogenomics Approaches to Ligand Design</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Thomas Klabunde</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction to Chemogenomics: Similar Receptors Bind Similar Ligands</td>
<td>115</td>
</tr>
<tr>
<td>7.2</td>
<td>Focused Libraries and Screening Collections Directed Against GPCRs</td>
<td>117</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Physicochemical Property-based Selection of GPCR Screening Sets</td>
<td>118</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Pharmacophore and Molecular Descriptors for GPCR Directed Libraries</td>
<td>118</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Privileged-fragment-based GPCR-directed Libraries</td>
<td>120</td>
</tr>
<tr>
<td>7.2.4</td>
<td>GPCR Collection and Subfamily-directed Library Design</td>
<td>121</td>
</tr>
<tr>
<td>7.3</td>
<td>Understanding Molecular Recognition: Impact on GPCR Ligand Design</td>
<td>124</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Sites for Ligand Recognition within Biogenic-amine-binding and Other GPCRs</td>
<td>125</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Design of GPCR-directed Libraries Using "Motifs" and "Themes"</td>
<td>127</td>
</tr>
<tr>
<td>7.3.3</td>
<td>"Chemoprints" for Recognition of GPCR-privileged Fragments</td>
<td>127</td>
</tr>
<tr>
<td>7.4</td>
<td>Molecular Interaction Models by Proteochemometrics</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Molecular Interaction Models by Proteochemometrics</td>
<td>132</td>
</tr>
<tr>
<td>8</td>
<td>Strategies for the Design of pGPCR-targeted Libraries</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Nikolay P. Savchuk, Sergey E. Tkachenko, and Konstantin V. Balakin</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Peptidergic GPCRs: Brief Overview</td>
<td>137</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Endogenous Ligands for pGPCRs</td>
<td>140</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Potential Therapeutic Targets of pGPCRs</td>
<td>140</td>
</tr>
<tr>
<td>8.2</td>
<td>Approaches to the Design of pGPCR-targeted Libraries</td>
<td>141</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Problems in Drug Discovery Directed Towards pGPCRs</td>
<td>143</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Docking and Pharmacophore-based Design</td>
<td>146</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Knowledge-based Data Mining Approaches</td>
<td>148</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Chemogenomics Approaches</td>
<td>149</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Incorporation of Specific Biomolecular Recognition Motifs</td>
<td>149</td>
</tr>
<tr>
<td>8.2.5.1</td>
<td>Privileged Structures</td>
<td>150</td>
</tr>
<tr>
<td>8.2.5.2</td>
<td>Mimetics of the Peptide Secondary Structure Elements</td>
<td>154</td>
</tr>
<tr>
<td>8.3</td>
<td>Synthesis of pGPCR-focused Libraries: Example of a Practical Methodology</td>
<td>156</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusions</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>160</td>
</tr>
</tbody>
</table>
Contents

9 Ligand-based Rational Design: Virtual Screening 165
David E. Clark and Christopher Higgs

9.1 Introduction 165
9.2 Why Use Ligand-based Virtual Screening? 166
9.2.1 Speed 166
9.2.2 Applicability 166
9.2.3 Complementarity 166
9.3 Overview of Ligand-based Virtual Screening 167
9.3.1 Starting Points 167
9.3.2 Chemical Structure Databases 167
9.3.3 Database Search Techniques 168
9.3.3.1 2-D Substructure Searching 168
9.3.3.2 2-D Similarity Searching 169
9.3.3.3 3-D Substructure Searching 170
9.3.3.4 3-D Similarity Searching 170
9.3.3.5 Pharmacophore Searching 170
9.4 Successful Applications of Ligand-based Virtual Screening for GPCRs 170
9.4.1 Somatostatin Agonists 171
9.4.2 Muscarinic M3 Receptor Antagonists 172
9.4.3 Urotensin II Antagonists 174
9.4.4 Melanin-concentrating Hormone-1 Receptor Antagonists 176
9.4.5 Growth Hormone Secretagogue Receptor Agonists 178
9.5 Conclusions 179

10 3-D Structure of G Protein-coupled Receptors 183
Leonardo Pardo, Xavier Deupi, Cedric Covaerts, and Mercedes Campillo

10.1 Introduction 183
10.2 Classification of G Protein-coupled Receptors 185
10.3 The Extracellular N-terminal Domain of G Protein-coupled Receptors 185
10.4 Sequence Analyses of the 7TM Segments of the Rhodopsin Family of G Protein-coupled Receptors 185
10.5 The Conformation of Pro-kinked Transmembrane a-Helices 186
10.6 Helix Deformation in the Rhodopsin Family of G Protein-coupled Receptors 187
10.6.1 Transmembrane Helix 1 187
10.6.2 Transmembrane Helix 2 188
10.6.3 Transmembrane Helix 3 190
10.6.4 Transmembrane Helix 4 190
10.6.5 Transmembrane Helix 5 190
10.6.6 Transmembrane Helix 6 192
10.6.7 Transmembrane Helix 7 193
10.7 Structural and Functional Role of Internal Water Molecules 193

References 180
11 7TM Models in Structure-based Drug Design

Frank E. Blaney, Anna-Maria Capelli, and Gioanna Tedesco

Contents

11.1 Introduction 205
11.2 Early Models of 7TM Receptors 207
11.3 Third Generation 7TM Models 208
11.3.1 Docking Ligands into Receptor Models 209
11.3.2 Designing 5-HT_{2C} Selective Antagonists 210
11.3.3 Even Wrong Models Can be Useful: The Importance of SDM Studies 212
11.4 Fourth Generation Models 214
11.4.1 Revisiting the 5-HT_{2C} Antagonist Binding Site 214
11.5 The Inclusion of Extracellular Loops in 7TM Models 215
11.6 Switching Selectivity in Neurokinin Antagonists 218
11.7 Homology (Fifth Generation) Models of 7TM Receptors 223
11.8 "Ligand-based" Design of 7TM Receptor Compounds 223
11.8.1 Pharmacophores Often do NOT Work 226
11.9 Refinement of 7TM Pharmacophores Using Current Receptor Models 228
11.10 Optimizing Properties of the CCR2 Antagonists 230
11.11 Some General Ligand Considerations When Docking 233
11.12 What the Future Holds 236
11.13 Abbreviations and Nomenclature 236

References 237

12 Receptor-based Rational Design: Virtual Screening

Didier Rognan

Contents

12.1 Introduction 241
12.2 Structure-based Screening Workflow 242
12.2.1 Setting Up a Ligand Library 242
12.2.2 Docking and Scoring 244
12.2.3 Data Post-processing 246
12.3 Retrospective Screening 247
12.3.1 Give it a Try 247
12.3.2 Several Alternative Screening Strategies 249
12.4 Prospective Screening 250
12.4.1 Screening Rhodopsin-based Ligand-biased Homology Models 250
12.4.2 Screening Ab Initio Models 253
12.4.3 A Few Difficult Screening Scenarios 253
12.5 Conclusions 255

References 256

Subject Index 261