Circuit Analysis: A Systems Approach

Russell M. Mersereau
Georgia Institute of Technology

Joel R. Jackson
Georgia Institute of Technology

PEARSON
Prentice Hall
Upper Saddle River, NJ 07458
2 Writing Circuit Equations 52
2-1 The Exhaustive Method for Writing a Sufficient Set of Circuit Equations 53
 2-1-1 Proof of Sufficiency of the Method* 53
 2-1-2 Examples of the Method 55
2-2 Supernodes and Supermeshes 58
 2-2-1 Supernodes 58
 2-2-2 Supermeshes 59
 2-2-3 Dependent Sources 62
2-3 Solving Circuit Equations 64
 2-3-1 Matrices 64
 2-3-2 Matrix Operations 64
 2-3-3 Representing Linear Equations in MATLAB* 66
 2-3-4 Matrix Descriptions of Resistive Circuits 67
 2-3-5 Superposition of Independent Sources 69
2-4 The Node Method 72
2-5 The Mesh Method 78
2-6 Conservation of Power 83
 A Confusing Issue: Proper Treatment of Sources 83
2-7 Chapter Summary 87
 2-7-1 Important Points Introduced 87
 2-7-2 New Abilities Acquired 87
2-8 Problems 88
 2-8-1 Drill Problems 88
 2-8-2 Basic Problems 92
 2-8-3 Advanced Problems 102
 2-8-4 Design Problems 104

3 Subnetworks 106
3-1 Resistor-Only Subnetworks 107
 3-1-1 Resistors in Series 107
3-1-2 Resistors in Parallel 109
 A Confusing Issue: Identifying Series and Parallel Elements 110
3-2 The $v-i$ Characteristics of Two-Terminal Networks 116
3-3 Thévenin Equivalent Networks 120
 3-3-1 Thévenin's Theorem for Resistive Networks 120
 3-3-2 Norton's Theorem for Resistive Networks 125
 3-3-3 Other Equivalence Relations 127
3-4 Selecting an Analysis Method 128
3-5 Graphical Analysis* 133
3-6 Chapter Summary 135
 3-6-1 Important Points Introduced 135
 3-6-2 New Abilities Acquired 136
3-7 Problems 136
 3-7-1 Drill Problems 136
 3-7-2 Basic Problems 138
 3-7-3 Advanced Problems 144
 3-7-4 Design Problems 149

4 Operational Amplifiers 150
4-1 The Ideal Opamp 150
4-2 The Node Method for Opamp Circuits 154
 A Confusing Issue: Writing KCL Equations at the Input Nodes 155
4-3 Additional Examples of Operational-Amplifier Circuits 156
 4-3-1 Noninverting Amplifier 156
 4-3-2 Difference Amplifier 157
 4-3-3 Summing Amplifier 158
 A Confusing Issue: Opamp Output Current 159
 4-3-4 Buffer Amplifiers and Loading 160
 4-3-5 Voltage-Controlled Current Source 161
 4-3-6 A "Negative Resistor" 162
 4-3-7 Integrator 163
 4-3-8 Differentiator 164
4-4 Chapter Summary 164
 4-4-1 Important Points Introduced 164
 4-4-2 New Abilities Acquired 165
4-5 Problems 165
 4-5-1 Drill Problem 165
 4-5-2 Basic Problems 165
5 Laplace Transforms 176
5-1 Some Basic Signals 178
5-1-1 Sinusoids 178
5-1-2 Exponentially Weighted Sinusoids 180
5-1-3 Switched-Exponential Signals 182
5-2 Definition of the Laplace Transform 183
5-3 Some Properties of the Laplace Transform 185
5-4 Inverse Laplace Transforms 188
5-4-1 Case 1: More Poles than Zeros 189
5-4-2 Case 2: Fewer Poles than Zeros \((m \geq n)\) 192
A Confusing Issue: Using Limits to Compute Residues 197
5-4-3 Case 3: Repeated Roots 198
5-5 Chapter Summary 199
5-5-1 Important Points Introduced 199
5-5-2 New Abilities Acquired 199
5-6 Problems 199
5-6-1 Drill Problems 199
5-6-2 Basic Problems 200
5-6-3 Advanced Problems 202

6 Circuits in the Laplace Domain 204
6-1 Circuits with One Reactive Element 205
6-1-1 Differential-Equation Descriptions 205
6-1-2 Solving Differential Equations with Exponential Inputs 208
6-1-3 Solving Differential Equations by Using Laplace Transforms 211
6-2 Circuits in the Laplace Domain 213
6-2-1 KCL in the Laplace Domain 214
6-2-2 KVL in the Laplace Domain 215
6-2-3 Element Relations in the Laplace Domain 215
A Confusing Issue: Modelling Initial Capacitor Voltages and Inductor Currents 223
6-3 Inspection Methods for First-Order Circuits with Constant Inputs 225
6-3-1 Circuit Behavior at \(t = \infty\) 225
6-3-2 Circuit Behavior at \(t = 0\) 226
6-3-3 Calculating the Time Constant \(\tau\) 227
6-4 Impedances and Admittances 229
6-4-1 Impedances Connected in Series and Parallel 230
6-4-2 Thévenin and Norton Equivalent Circuits* 232

6-5 Systematic Analysis Methods 234
6-5-1 A Set of Sufficient Equations for Analyzing a Circuit* 234
6-5-2 Node and Mesh Methods in the Laplace Domain 237
6-5-3 Operational Amplifiers in the Laplace Domain 239

6-6 Chapter Summary 240
6-6-1 Important Points Introduced 240
6-6-2 New Abilities Acquired 241

6-7 Problems 241
6-7-1 Drill Problems 241
6-7-2 Basic Problems 244
6-7-3 Advanced Problems 249
6-7-4 Design Problems 252

7 System Functions 253
7-1 Circuits as Systems 254
7-1-1 The Input-Output Point of View 254
7-1-2 The Complete Solution of a Circuit 255
7-1-3 Circuits at Initial Rest 259
7-1-4 Impulse Responses, Poles, and Zeros 260
7-1-5 The Unit-Step Response 264

7-2 Linearity and Time Invariance 266
7-2-1 Circuits at Initial Rest as Linear Systems 266
7-2-2 Circuits at Initial Rest as Time-Invariant Systems 267
7-2-3 Exploiting Linearity and Time Invariance 268

7-3 Responses to Switched-Exponential Inputs 272
7-3-1 The General Case 273
7-3-2 Impulse Responses of First- and Second-Order Systems 274

7-4 Two Additional Circuit Descriptions* 277
7-4-1 Differential-Equation Characterization at Initial Rest 277
7-4-2 Impulse-Response Characterization 281

7-5 Chapter Summary 284
7-5-1 Important Points Introduced 284
7-5-2 New Abilities Acquired 285

7-6 Problems 285
7-6-1 Drill Problems 285
7-6-2 Basic Problems 286
8 Sinusoidal Input Signals 297

8-1 The Sinusoidal Steady State 298
 8-1-1 Sinusoidal Signals 298
 8-1-2 Physical Circuits and Mathematical Models 298
 8-1-3 Responses to Real Sinusoidal Inputs 299
 8-1-4 Responses to Unswitched Signals 303

8-2 Analyzing Circuits by Using Phasors 304
 8-2-1 A Simple Circuit with a Complex Exponential Input 304
 8-2-2 The General Case 308
 8-2-3 Networks with Multiple Sources 316

8-3 Frequency-Domain Circuit Simplifications 319
 8-3-1 Series and Parallel Connections 319
 8-3-2 Thévenin and Norton Equivalent Circuits 321
 8-3-3 The Node and Mesh Methods in the Phasor Domain 323
 8-3-4 Operational-Amplifier Circuits 329

8-4 Power in the Phasor Domain 330
 8-4-1 Average Power 330
 8-4-2 RMS Values 331
 8-4-3 Power in Circuits with Sinusoidal Excitations 332

8-5 Maximum Power Transfer 336
 8-5-1 Resistive Circuits 336
 8-5-2 General Circuits 337

8-6 Chapter Summary 339
 8-6-1 Important Points Introduced 339
 8-6-2 New Abilities Acquired 340

8-7 Problems 340
 8-7-1 Drill Problems 340
 8-7-2 Basic Problems 342
 8-7-3 Advanced Problems 347
 8-7-4 Design Problems 349

9 Frequency Responses of Circuits 351

9-1 Spectrum Representations of Periodic Signals 352
 9-1-1 Spectrum of a Sum of Sinusoids 352
 9-1-2 Periodic Waveforms 354
9-1-3 Fourier-Series Representations 355
9-1-4 Response of a Circuit to a Periodic Input 358

9-2 Spectrum Representations for Aperiodic Signals 362
9-2-1 The Fourier Transform 362
9-2-2 Circuit Analysis by Using Fourier Transforms 363

9-3 The System Function and the Frequency Response 366
9-3-1 Graphical Interpretation of Frequency Response 366
9-3-2 Resonance 371

9-4 Bode Plots 375
9-4-1 First-Order Systems 376
9-4-2 Second-Order Systems 378
9-4-3 Multifactor Bode Plots 379
 A Confusing Issue: Normalized Forms for System Functions 382

9-5 Chapter Summary 385
9-5-1 Important Points Introduced 385
9-5-2 New Abilities Acquired 386

9-6 Problems 386
9-6-1 Drill Problems 386
9-6-2 Basic Problems 387
9-6-3 Advanced Problems 393
9-6-4 Design Problems 396

10 Filter Circuits 398
10-1 Lowpass Filters 399
10-1-1 Ideal vs. Buildable Filters 400
10-1-2 Butterworth and Chebyshev Lowpass Filters 401
10-1-3 Realizations of Lowpass Second-Order Sections That Use Operational Amplifiers 406

10-2 Transforming Basic Filters 408
10-2-1 Frequency Scaling 409
10-2-2 Lowpass-to-Highpass Transformations 410
10-2-3 Lowpass-to-Bandpass Transformations 412
10-2-4 Impedance Scaling 414

10-3 Chapter Summary 415
10-3-1 Important Points Introduced 415
10-3-2 New Abilities Acquired 415

10-4 Problems 415
10-4-1 Drill Problems 415
10-4-2 Basic Problems 416