Molecular Interaction Fields

Applications in Drug Discovery and ADME Prediction

Edited by Gabriele Cruciani
Contents

A Personal Foreword V

Preface XIV

List of Contributors XVI

I Introduction 1

1 The Basic Principles of GRID 3
 Peter Goodford

1.1 Introduction 3
1.2 Philosophy and Objectives 3
1.3 Priorities 4
1.4 The GRID Method 5
 1.4.1 GRID Probes Are Anisometric 6
 1.4.2 The Target “Responds” to the Probe 8
 1.4.3 The Target is Immersed in Water 10
1.5 The GRID Force Field 10
 1.5.1 The Lennard-Jones Term 11
 1.5.2 The Electrostatic Term 11
 1.5.3 The Hydrogen Bond Term 12
1.5.4 The Other Terms 12
1.6 Nomenclature 14
 1.6.1 “ATOM” Records 14
 1.6.2 “HETATM” Records 15
1.7 Calibrating the GRID Force Field 16
 1.7.1 Checking the Calibration 17
 1.7.2 Checking Datafile GRUB 17
1.8 The Output from GRID 18
 1.8.1 GRID Maps from Macromolecules 19
 1.8.2 GRID Maps from a Small Molecule 24
1.9 Conclusions 25
Contents

2 Calculation and Application of Molecular Interaction Fields 27
Rebecca C. Wade

2.1 Introduction 27
2.2 Calculation of MIFs 27
2.2.1 The Target 27
2.2.2 The Probe 28
2.2.3 The Interaction Function 29
2.2.3.1 Van der Waals Interactions 29
2.2.3.2 Electrostatic Interactions 30
2.2.3.3 Hydrogen Bonds 31
2.2.3.4 Entropy 32
2.3 Selected Applications of MIFs 33
2.3.1 Mapping a Ligand Binding Site in a Protein 33
2.3.2 Deriving 3D-QSARs 34
2.3.3 Similarity Analysis of a Set of Related Molecules 36
2.4 Concluding Remarks and Outlook 38

II Pharmacodynamics 43

3 Protein Selectivity Studies Using GRID-MIFs 45
Thomas Fox

3.1 Introduction 45
3.2 GRID Calculations and Chemometric Analysis 46
3.2.1 Source and Selection of Target Structures 46
3.2.2 Selection and Superimposition of Binding Sites 47
3.2.3 Calculation of the Molecular Interaction Field 47
3.2.4 Matrix Generation and Pretreatments 50
3.2.4.1 Region Cut-outs 51
3.2.5 GRID/PCA 51
3.2.5.1 Score Plots 52
3.2.5.2 Two-Dimensional Loading Plots 53
3.2.5.3 Loading Contour Maps 54
3.2.5.4 Problems of GRID/PCA 54
3.2.6 GRID/CPCA 55
3.2.6.1 Block Unscaled Weights 56
3.2.6.2 CPCA 58
3.2.6.3 Identification of Important Variable Blocks for Selectivity 59
3.2.6.4 Contour Plots 59
3.3 Applications 60
3.3.1 DNA Minor Groove Binding – Compare AAA and GGG Double Helix 60
3.3.2 Dihydrofolate Reductase 61
3.3.3 Cyclooxygenase 61
3.3.4 Penicillin Acylase 62
3.3.5 Serine Proteases 63
 3.3.5.1 S1 Pocket 64
 3.3.5.2 P Pocket 64
 3.3.5.3 D Pocket 66
3.3.6 CYP450 67
3.3.7 Target Family Landscapes of Protein Kinases 69
3.3.8 Matrix Metalloproteinases (MMPs) 70
3.3.9 Nitric Oxide Synthases 74
3.3.10 PPARs 75
3.3.11 Bile Acid Transportation System 75
3.3.12 Ephrin Ligands and Eph Kinases 76
3.4 Discussion and Conclusion 77

4 FLAP: 4-Point Pharmacophore Fingerprints from GRID 83
 Francesco Perruccio, Jonathan S. Mason, Simone Sciabola, and Massimo Baroni
 4.1 Introduction 84
 4.1.1 Pharmacophores and Pharmacophore Fingerprints 84
 4.1.2 FLAP 86
 4.2 FLAP Theory 86
 4.3 Docking 88
 4.3.1 GLUE: A New Docking Program Based on Pharmacophores 89
 4.3.2 Case Study 91
 4.4 Structure Based Virtual Screening (SBVS) 92
 4.5 Ligand Based Virtual Screening (LBVS) 94
 4.6 Protein Similarity 95
 4.7 TOPP (Triplets of Pharmacophoric Points) 97
 4.8 Conclusions 101

5 The Complexity of Molecular Interaction: Molecular Shape
 Fingerprints by the PathFinder Approach 103
 Iain McLay, Mike Hann, Emanuele Carosati, Gabriele Cruciani, and Massimo Baroni
 5.1 Introduction 103
 5.2 Background 104
 5.3 The PathFinder Approach 105
 5.3.1 Paths from Positive MIF 105
 5.3.2 Paths from Negative MIF 107
 5.4 Examples 109
 5.4.1 3D-QSAR 109
 5.4.2 CYP Comparison 112
 5.4.3 Target–Ligand Complexes 112
 5.5 Conclusions 115
6 Alignment-independent Descriptors from Molecular Interaction Fields 117
Manuel Pastor

6.1 Introduction 117
6.1.1 The Need for MIF-derived Alignment-independent Descriptors 117
6.1.2 GRIND Applications 119
6.2 GRIND 120
6.2.1 The Basic Idea 120
6.2.1.1 Computation of MIF 121
6.2.1.2 Extraction of Highly Relevant Regions 122
6.2.1.3 MACC2 Encoding 124
6.2.2 The Analysis of GRIND Variables 128
6.3 How to Interpret a GRIND-based 3D QSAR Model 130
6.3.1 Overview 130
6.3.2 Interpreting Correlograms 131
6.3.3 Interpreting Single Variables 133
6.3.4 GRIND-based 3D QSAR Models are not Pharmacophores 134
6.4 GRIND Limitations and Problems 135
6.4.1 GRIND and the Ligand Conformations 135
6.4.2 The Ambiguities 137
6.4.3 Chirality 139
6.5 Recent and Future Developments 139
6.5.1 Latest Developments 139
6.5.1.1 Shape Description 139
6.5.1.2 Anchor GRIND 140
6.5.2 The Future 140
6.6 Conclusions 141

7 3D-QSAR Using the GRID/GOLPE Approach 145
Wolfgang Sippl

7.1 Introduction 145
7.2 3D-QSAR Using the GRID/GOLPE Approach 147
7.3 GRID/GOLPE Application Examples 149
7.3.1 Estrogen Receptor Ligands 149
7.3.2 Acetylcholinesterase Inhibitors 158
7.4 Conclusion 165
III Pharmacokinetics 171

8 Use of MIF-based VolSurf Descriptors in Physicochemical and Pharmacokinetic Studies 173
Raimund Mannhold, Giuliano Berellini, Emanuele Carosati, and Paolo Benedetti

8.1 ADME Properties and Their Prediction 173
8.2 VolSurf Descriptors 174
8.3 Application Examples 179
8.3.1 Aqueous Solubility 180
8.3.2 Octanol/Water Partition Coefficients 184
8.3.3 Volume of Distribution (VD) 190
8.3.4 Metabolic Stability 192
8.4 Conclusion 193

9 Molecular Interaction Fields in ADME and Safety 197
Giovanni Cianchetta, Yi Li, Robert Singleton, Meng Zhang, Marianne Wildgoose, David Rampe, Jiesheng Kang, and Roy J. Vaz

9.1 Introduction 197
9.2 GRID and MIFs 198
9.3 Role of Pgp Efflux in the Absorption 199
9.3.1 Materials and Methods 199
9.3.1.1 Dataset 199
9.3.1.2 Computational Methods 199
9.3.2 ALMOND Descriptors 200
9.3.3 Results 200
9.3.4 Pharmacophoric Model Interpretation 202
9.4 HERG Inhibition 204
9.4.1 Materials and Methods 204
9.4.1.1 Dataset 204
9.4.1.2 Computational Methods 204
9.4.2 Results 205
9.4.2.1 Nonbasic Nitrogen Subset 205
9.4.2.2 Ionizable Nitrogen Subset 206
9.4.2.3 Interpretation of Pharmacophoric Models 208
9.5 CYP 3A4 Inhibition 209
9.5.1 Materials and Methods 209
9.5.1.1 Dataset 209
9.5.1.2 Computational Methods 210
9.5.1.3 Ligand GRIND Descriptors 210
9.5.1.4 Protein GRIND Descriptors 210
9.5.1.5 Overlap of Structures 211
9.5.2 Results 211
10 Progress in ADME Prediction Using GRID-Molecular Interaction Fields

Ismael Zamora, Marianne Ridderström, Anna-Lena Ungell, Tommy Andersson, and Lovisa Afzelius

10.1 Introduction: ADME Field in the Drug Discovery Process
10.2 Absorption
10.2.1 Passive Transport, Trans-cellular Pathway
10.2.2 Active Transport
10.3 Distribution
10.3.1 Solubility
10.3.2 Unspecific Protein Binding
10.3.3 Volume of Distribution
10.4 Metabolism
10.4.1 Cytochrome P450 Inhibition
10.4.2 Site of Metabolism Prediction
10.4.3 Metabolic Stability
10.4.4 Selectivity Analysis
10.5 Conclusions

11 Rapid ADME Filters for Lead Discovery

Tudor I. Oprea, Paolo Benedetti, Giuliano Berellini, Marius Olah, Kim Fejgin, and Scott Boyer

11.1 Introduction
11.2 The Rule of Five (Ro5) as ADME Filter
11.3 Molecular Interaction Fields (MIFs): VolSurf
11.4 MIF-based ADME Models
11.5 Clinical Pharmacokinetics (PK) and Toxicological (Tox) Datasets
11.6 VolSurf in Clinical PK Data Modeling
11.7 ChemGPS-VolSurf (GPSVS) in Clinical PK Property Modeling
11.8 ADME Filters: GPSVS vs. Ro5
11.9 PENGUINS: Ultrafast ADME Filter
11.10 Integrated ADME and Binding Affinity Predictions
11.11 Conclusions
12 GRID-Derived Molecular Interaction Fields for Predicting the Site of Metabolism in Human Cytochromes 273
Gabriele Cruciani, Yasmin Aristei, Riccardo Vianello, and Massimo Baroni

12.1 Introduction 273
11.2 The Human Cytochromes P450 274
12.3 CYPs Characterization using GRID Molecular Interaction Fields 275
12.4 Description of the Method 279
12.4.1 P450 Molecular Interaction Fields Transformation 280
12.4.2 3D Structure of Substrates and Fingerprint Generation 281
12.4.3 Substrate–CYP Enzyme Comparison: the Recognition Component 282
12.4.4 The Reactivity Component 283
12.4.5 Computation of the Probability of a Site being the Metabolic Site 284
12.5 An Overview of the Most Significant Results 285
12.5.1 Importing Different P450 Cytochromes 287
12.6 Conclusions 289
12.7 Software Package 289

Index 291

CD-ROM Information 305